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1
PROCESSING OF FINITE AUTOMATA
BASED ON A NODE CACHE

BACKGROUND

The Open Systems Interconnection (OSI) Reference
Model defines seven network protocol layers (L.1-1.7) used
to communicate over a transmission medium. The upper
layers (L4-L7) represent end-to-end communications and
the lower layers (LL1-L.3) represent local communications.

Networking application aware systems need to process,
filter and switch a range of .3 to L7 network protocol layers,
for example, 1.7 network protocol layers such as, HyperText
Transfer Protocol (HTTP) and Simple Mail Transfer Proto-
col (SMTP), and .4 network protocol layers such as Trans-
mission Control Protocol (TCP). In addition to processing
the network protocol layers, the networking application
aware systems need to simultaneously secure these protocols
with access and content based security through [.4-1.7
network protocol layers including Firewall, Virtual Private
Network (VPN), Secure Sockets Layer (SSL), Intrusion
Detection System (IDS), Internet Protocol Security (IPSec),
Anti-Virus (AV) and Anti-Spam functionality at “wire-
speed” (i.e., a rate of data transfer over a physical medium
of the network over which data is transmitted and received).

Network processors are available for high-throughput 1.2
and L3 network protocol processing, that is, performing
packet processing to forward packets at wire-speed. Typi-
cally, a general purpose processor is used to process L4-1.7
network protocols that require more intelligent processing.
Although a general purpose processor may perform such
compute intensive tasks, it may not provide sufficient per-
formance to process the data so that the data may be
forwarded at wire-speed.

An Intrusion Detection System (IDS) application may
inspect content of individual packets flowing through a
network, and may identify suspicious patterns that may
indicate an attempt to break into or compromise a system.
One example of a suspicious pattern may be a particular text
string in a packet followed by 100 characters later by another
particular text string. Such content aware networking may
require inspection of the contents of packets at wire speed.
The content may be analyzed to determine whether there has
been a security breach or an intrusion.

Alarge number of patterns and rules in the form of regular
expressions (also referred to herein as regular expression
patterns) may be applied to ensure that all security breaches
or intrusions are detected. A regular expression is a compact
method for describing a pattern in a string of characters. The
simplest pattern matched by a regular expression is a single
character or string of characters, for example, /c/ or /cat/.
The regular expression may also include operators and
meta-characters that have a special meaning Through the use
of meta-characters, the regular expression may be used for
more complicated searches such as, “abc.*xyz.” That is, find
the string “abc” followed by the string “xyz,” with an
unlimited number of characters in-between “abe” and “xyz.”
Another example is the regular expression “abc..abc.*xyz;”
that is, find the string “abe,” followed two characters later by
the string “abe,” and an unlimited number of characters later
by the string “xyz.”

Content searching is typically performed using a search
method such as, Deterministic Finite Automata (DFA) or
Non-Deterministic Finite Automata (NFA) to process the
regular expression.
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2
SUMMARY

Embodiments of the present invention provide a method,
apparatus, computer program product, and corresponding
system for compilation and run time processing of finite
automata.

According to one embodiment, in at least one processor
operatively coupled to a plurality of memories in a memory
hierarchy and a node cache in a security appliance opera-
tively coupled to a network a method may store a plurality
of nodes of at least one finite automaton in the plurality of
memories. The method may cache one or more nodes of the
plurality of nodes in a node cache. The one or more nodes
may be stored in a given memory of the plurality of
memories. The given memory may be at a hierarchical level
in the memory hierarchy. The one or more nodes may be
cached in the node cache based on a cache miss of a given
node of the one or more nodes and a hierarchical node
transaction size associated with the hierarchical level.

The hierarchical node transaction size associated with the
hierarchical level may denote a maximum number of nodes
to fetch from the given memory at the hierarchical level
based on a read access of the given memory by the at least
one processor.

The hierarchical node transaction size associated with the
hierarchical level may be inversely proportional to a ranking
of the hierarchical level in the memory hierarchy. A highest
ranked hierarchical level in the memory hierarchy may be
associated with a smallest hierarchical node transaction size.
A lowest ranked hierarchical level in the memory hierarchy
may be associated with a largest hierarchical node transac-
tion size.

The memory hierarchy may include multiple hierarchical
levels. The method may configure the node cache to store at
least a threshold number of nodes of the at least one finite
automaton. The method may denote the hierarchical node
transaction size associated with a lowest ranked hierarchical
level of the multiple hierarchical levels to enable the at least
one processor to cache the threshold number of nodes.

Caching the one or more nodes may include evicting all
nodes cached in the node cache if the given memory is at a
lowest ranked hierarchical level of the multiple hierarchical
levels.

Caching the one or more nodes may include employing a
least recently used (LRU) or round-robin replacement policy
to evict one or more cached nodes from the node cache, if
the hierarchical level is higher than a lowest ranked hierar-
chical level of the multiple hierarchical levels. A number of
the one or more cache nodes evicted may be determined
based on the hierarchical level.

The at least one finite automaton may include a per-
pattern non-deterministic finite automaton (NFA) generated
for a respective regular expression pattern and the one or
more nodes cached may be arranged in a consecutive
manner within the per-pattern NFA.

The method may include walking the one or more nodes
cached with segments of a payload of an input stream to
match the respective regular expression pattern in the input
stream.

The plurality of memories may include a first memory, a
second memory, and a third memory. The first and second
memories may be co-located on a chip with the at least one
processor and the third memory may be located off the chip
and at a lowest ranked hierarchical level of the multiple
hierarchical levels.
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Another example embodiment disclosed herein includes
an apparatus corresponding to operations consistent with the
method embodiments disclosed herein.

Further, yet another example embodiment may include a
non-transitory computer-readable medium having stored
thereon a sequence of instructions which, when loaded and
executed by a processor, causes a processor to perform
methods disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to
scale, emphasis instead being placed upon illustrating
embodiments of the present invention.

FIG. 1 is a block diagram of an embodiment of a security
appliance in which embodiments disclosed herein may be
implemented.

FIGS. 2A-G are example NFA and DFA graphs and a table
illustrating the concept of graph explosion.

FIG. 3A is another block diagram of an embodiment of a
security appliance in which embodiments disclosed herein
may be implemented.

FIG. 3B is a flow diagram of an example embodiment of
a method that may be implemented in at least one processor
operatively coupled to at least one memory in a security
appliance operatively coupled to a network.

FIG. 4 is a block diagram of an example embodiment of
an environment of a hyper non-deterministic automata
(HNA) co-processor.

FIG. 5A is a block diagram of an example embodiment of
a per-pattern non-deterministic finite automaton (NFA)
graph that may be used by a walker to match a regular
expression pattern in an input stream.

FIG. 5B is a table of an example embodiment of process-
ing cycles for walking the per-pattern NFA graph of FIG. 5A
with a payload.

FIG. 6 is a block diagram of an example embodiment of
an environment for the walker.

FIG. 7A is a block diagram of an example embodiment of
an environment for the compiler.

FIG. 7B is a block diagram of an example embodiment of
the HNA co-processor operatively coupled to a plurality of
memories mapped to hierarchical levels in a memory hier-
archy.

FIG. 8 is a block diagram of an example embodiment of
node distributions for multiple per-pattern NFAs.

FIG. 9 is a flow diagram of an example embodiment of a
method that may be performed in at least one processor
operatively coupled to a plurality of memories mapped to
hierarchical levels in a memory hierarchy in a security
appliance operatively coupled to a network.

FIG. 10 is a block diagram of an example embodiment of
another node distribution for nodes of multiple per-pattern
NFAs.

FIG. 11 is a flow diagram of an example embodiment of
a method for distributing nodes of at least one per-pattern
NFA.

FIG. 12 is a flow diagram of another example embodi-
ment of a method that may be performed in at least one
processor operatively coupled to a plurality of memories
mapped to hierarchical levels in a memory hierarchy in a
security appliance operatively coupled to a network.
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FIG. 13A is a flow diagram 1300 of an example embodi-
ment of a method that may be performed in at least one
processor operatively coupled to a plurality of memories in
a memory hierarchy and a node cache in a security appliance
operatively coupled to a network.

FIG. 13B is a block diagram of an example embodiment
of a payload and segments with respective offsets in the
payload.

FIG. 13C is a table of an example embodiment of pro-
cessing cycles for walking the per-pattern NFA graph of
FIG. 5A with the payload of FIG. 13B by selecting the lazy
path at the split node.

FIG. 13D is a table that is a continuation of the table of
FIG. 13C.

FIG. 14 is a block diagram of an example internal
structure of a computer optionally within an embodiment
disclosed herein.

DETAILED DESCRIPTION

Before describing example embodiments of the present
invention in detail, an example security application in which
the embodiments may be implemented and typical process-
ing using deterministic finite automata (DFA) and non-
deterministic finite automata (NFA) are described immedi-
ately below to help the reader understand the inventive
features disclosed herein.

FIG. 1 is a block diagram of an embodiment of a security
appliance 102 in which embodiments disclosed herein may
be implemented. The security appliance 102 may include a
network services processor 100. The security appliance 102
may be a standalone system that may switch packets
received at one network interface 103a to another network
interface 1035 and may perform a plurality of security
functions on received packets prior to forwarding the pack-
ets. For example, the security appliance 102 may be used to
perform security processing on packets 101a that may be
received on a Wide Area Network (WAN) 1054, or any other
suitable network, prior to forwarding the processed packets
1015 to a Local Area Network (LAN) 1055, or any other
suitable network.

The network services processor 100 may be configured to
process Open System Interconnection (OSI) network [.2-1.7
layer protocols encapsulated in received packets. As is
well-known to those skilled in the art, the OSI reference
model defines seven network protocol layers (I.L1-1.7). The
physical layer (I.1) represents the actual interface, electrical
and physical that connects a device to a transmission
medium. The data link layer (L.2) performs data framing.
The network layer (L.3) formats the data into packets. The
transport layer (L4) handles end to end transport. The
session layer (LL5) manages communications between
devices, for example, whether communication is half-duplex
or full-duplex. The presentation layer (I.6) manages data
formatting and presentation, for example, syntax, control
codes, special graphics and character sets. The application
layer (L7) permits communications between users, for
example, file transfer and electronic mail.

The network services processor 100 may schedule and
queue work (e.g., packet processing operations) for upper
level network protocols, for example [.4-1.7, and enable
processing of upper level network protocols in received
packets to be performed to forward packets at wire-speed.
By processing the protocols to forward the packets at
wire-speed, the network services processor 100 does not
slow down the network data transfer rate. The network
services processor 100 may receive packets from the net-
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work interfaces 103a or 1035 that may be physical hardware
interfaces, and may perform [.2-1.7 network protocol pro-
cessing on the received packets. The network services
processor 100 may subsequently forward processed packets
10154 through the network interfaces 103« or 1035 to another
hop in the network, a final destination, or through another
bus (not shown) for further processing by a host processor
(not shown). The network protocol processing may include
processing of network security protocols such as Firewall,
Application Firewall, Virtual Private Network (VPN)
including IP Security (IPSec) and/or Secure Sockets Layer
(SSL), Intrusion Detection System (IDS), Anti-virus (AV),
or any other suitable network protocol.

The network services processor 100 may deliver high
application performance using a plurality of processors (i.e.,
cores). Each of the cores (not shown) may be dedicated to
performing data plane, control plane operations, or a com-
bination thereof. A data plane operation may include packet
operations for forwarding packets. A control plane operation
may include processing of portions of complex higher level
protocols such as Internet Protocol Security (IPSec), Trans-
mission Control Protocol (TCP), Secure Sockets Layer
(SSL), or any other suitable higher level protocol. The data
plane operation may include processing of other portions of
these complex higher level protocols.

The network services processor 100 may also include
application specific co-processors that may offload the cores
so that the network services processor 100 achieves high-
throughput. For example, the network services processor
100 may include an acceleration unit 106 that may include
a hyper non-deterministic automata (HNA) co-processor
108 for hardware acceleration of NFA processing and a
hyper finite automata (HFA) co-processor 110 for hardware
acceleration of DFA processing. The HNA 108 and HFA 110
co-processors may be configured to offload the network
services processor 100 general purpose cores (not shown)
from the heavy burden of performing compute and memory
intensive pattern matching methods.

The network services processor 100 may perform pattern
searching, regular expression processing, content validation,
transformation, and security accelerate packet processing.
The regular expression processing and the pattern searching
may be used to perform string matching for AV and IDS
applications and other applications that may require string
matching. A memory controller (not shown) in the network
services processor 100 may control access to a memory 104
that is operatively coupled to the network services processor
100. The memory 104 may be internal (i.e., on-chip) or
external (i.e., off chip), or a combination thereof, and may be
configured to store data packets received, such as packets
101a for processing by the network services processor 100.
The memory 104 may be configured to store compiled rules
data utilized for lookup and pattern matching in DFA and
NFA graph expression searches. The compiled rules data
may be stored as a binary image 112 that may include
compiled rules data for both DFA and NFA, or multiple
binary images separating DFA compiled rules data from
NFA compiled rules data.

Typical content aware application processing may use
either a DFA or an NFA to recognize patterns in content of
received packets. DFA and NFA are both finite state
machines, that is, models of computation each including a
set of states, a start-state, an input alphabet (set of all
possible symbols) and a transition function. Computation
begins in the start-state and changes to new states dependent
on the transition function.
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The pattern is commonly expressed using a regular
expression that includes atomic elements, for example,
normal text characters such as, A-Z and 0-9, and meta-
characters, such as, *, " and |. The atomic elements of a
regular expression are the symbols (single characters) to be
matched. Atomic elements may be combined with meta-
characters that allow concatenation, alternation (I), and
Kleene-star (*). The meta-character for concatenation may
be used to create multiple character matching patterns from
a single character (or sub-strings) while the meta-character
for alternation (1) may be used to create a regular expression
that can match any of two or more sub-strings. The meta-
character Kleene-star (*) allows a pattern to match any
number of times, including no occurrences of the preceding
character or string of characters.

Combining different operators and single characters
allows complex subpatterns of expressions to be con-
structed. For example, a subpattern such as (th(islat)*) may
match multiple character strings, such as: th, this, that, thisis,
thisat, thatis, or thatat. Another example of a complex
subpattern of an expression may be one that incorporates a
character class construct [ . . . | that allows listing of a list
of characters for which to search. For example, gr[ealy looks
for both grey and gray. Other complex subpattern examples
are those that may use a dash to indicate a range of
characters, for example, [A-Z], or a meta-character “.” that
matches any one character. An element of the pattern may be
an atomic element or a combination of one or more atomic
elements in combination with one or more meta-characters.

The input to the DFA or NFA state machine typically
includes segments, such as a string of (8-bit) bytes, that is,
the alphabet may be a single byte (one character or symbol),
from an input stream (i.e., received packets). Each segment
(e.g., byte) in the input stream may result in a transition from
one state to another state. The states and the transition
functions of the DFA or NFA state machine may be repre-
sented by a graph of nodes. Each node in the graph may
represent a state and arcs (also referred to herein as transi-
tions or transition arcs) in the graph may represent state
transitions. A current state of the state machine may be
represented by a node identifier that selects a particular node
in the graph.

Using DFA to process a regular expression and to find a
pattern or patterns described by a regular expression in an
input stream of characters may be characterized as having
deterministic run time performance. A next state of a DFA
may be determined from an input character (or symbol), and
a current state of the DFA, because there is only one state
transition per DFA state. As such, run time performance of
the DFA is said to be deterministic and the behavior can be
completely predicted from the input. However, a tradeoft for
determinism is a graph in which the number of nodes (or
graph size) may grow exponentially with the size of a
pattern.

In contrast, the number of nodes (or graph size) of an NFA
graph may be characterized as growing linearly with the size
of the pattern. However, using NFA to process the regular
expression, and to find a pattern or patterns described by the
regular expression in the input stream of characters, may be
characterized as having non-deterministic run time perfor-
mance. For example, given an input character (or symbol)
and a current state of the NFA, it is possible that there is
more than one next state of the NFA to which to transition.
As such, a next state of the NFA cannot be uniquely
determined from the input and the current state of the NFA.
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Thus, run time performance of the NFA is said to be
non-deterministic as the behavior cannot be completely
predicted from the input.

FIGS. 2A-G show the concept of DFA “graph explosion.”
FIGS. 2A, 2B, and 2C show NFA graphs for patterns
“*a[\n],” “*a["\n] [\n],” “.*a["\n] ["\n] ["\n],” respectively,
and FIGS. 2D, 2E, and 2F show DFA graphs for the same
patterns, respectively. As shown in FIGS. 2A-2F, and sum-
marized by the table of FIG. 2G, NFA may grow linearly for
some patterns while DFA for the same patterns may grow
exponentially resulting in a graph explosion. As shown, for
a given pattern or patterns, a number of DFA states may be
larger than a number of NFA states, typically on the order of
several hundred more or a thousand more states. This is an
example of “graph explosion,” which is a hallmark charac-
teristic of DFA.

According to embodiments disclosed herein, content
searching may be performed using DFA, NFA, or a combi-
nation thereof. According to one embodiment, a run time
processor, co-processor, or a combination thereof, may be
implemented in hardware and may be configured to imple-
ment a compiler and a walker.

The compiler may compile a pattern or an input list of
patterns (also known as signatures or rules) into the DFA,
NFA, or combination thereof. The DFA and NFA may be
binary data structures, such as DFA and NFA graphs and
tables.

The walker may perform run time processing, i.e. actions
for identifying an existence of a pattern in an input stream,
or matching the pattern to content in the input stream.
Content may be a payload portion of an Internet Protocol
(IP) datagram, or any other suitable payload in an input
stream. Run time processing of DFA or NFA graphs may be
referred to as walking the DFA or NFA graphs, with the
payload, to determine a pattern match. A processor config-
ured to generate DFA, NFA, or a combination thereof, may
be referred to herein as a compiler. A processor configured
to implement run time processing of a payload using the
generated DFA, NFA, or combination thereof, may be
referred to herein as a walker. According to embodiments
disclosed herein, the network services processor 100 may be
configured to implement a compiler and a walker in the
security appliance 102.

FIG. 3A is a block diagram of another embodiment of the
security appliance 102 of FIG. 1 in which embodiments
disclosed herein may be implemented. As disclosed in
reference to FIG. 1, the security appliance 102 may be
operatively coupled to one or more networks and may
comprise the memory 104 and the network services proces-
sor 100 that may include the acceleration unit 106. In
reference to FIG. 3A, the network services processor 100
may be configured to implement a compiler 306 that gen-
erates the binary image 112 and a walker 320 that uses the
binary image 112. For example, the compiler 306 may
generate the binary image 112 that includes compiled rules
data used by the walker 320 for performing pattern matching
methods on received packets 101a (shown in FIG. 1).
According to embodiments disclosed herein, the compiler
306 may generate the binary image 112 by determining
compiled rules data for DFA, NFA, or a combination thereof,
based on at least one heuristic as described further below.
The compiler 306 may determine rules data advantageously
suited for DFA and NFA.

According to embodiments disclosed herein, the compiler
306 may generate the binary image 112 by processing a rule
set 310 that may include a set of one or more regular
expression patterns 304 and optional qualifiers 308. From
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the rule set 310, the compiler 306 may generate a unified
DFA 312 using subpatterns selected from all of the one or
more regular expression patterns and at least one NFA 314
for at least one pattern in the set of one or more regular
expression patterns 304 for use by the walker 320 during run
time processing, and metadata (not shown) including map-
ping information for transitioning the walker 320 between
states (not shown) of the unified DFA 312 and states of the
at least one NFA 314.

The unified DFA 312 and the at least one NFA 314 may
be represented data structure-wise as graphs, or in any other
suitable form, and the mapping in the metadata may be
represented data structure-wise as one or more tables, or in
any other suitable form. According to embodiments dis-
closed herein, if a subpattern selected from a pattern is the
pattern, no NFA is generated for the pattern. According to
embodiments disclosed herein, each NFA that is generated
may be for a particular pattern in the set, whereas a unified
DFA may be generated based on all subpatterns from all
patterns in the set.

The walker 320 walks the unified DFA 312 and the at least
one NFA 314 with a payload by transitioning states of the
unified DFA 312 and the at least one NFA based on con-
suming (i.e., processing) segments, such as bytes from the
payload in the received packets 101a. As such, the walker
320 walks the payload through the unified DFA 312 and the
at least one NFA 314 that may be a per-pattern NFA
generated for a single regular expression pattern.

The rule set 310 may include a set of one or more regular
expression patterns 304 and may be in a form of a Perl
Compatible Regular Expression (PCRE) or any other suit-
able form. PCRE has become a de facto standard for regular
expression syntax in security and networking applications.
As more applications requiring deep packet inspections have
emerged or more threats have become prevalent in the
Internet, corresponding signatures/patterns to identify virus/
attacks or applications have also become more complex. For
example, signature databases have evolved from having
simple string patterns to regular expression (regex) patterns
with wild card characters, ranges, character classes, and
advanced PCRE signatures.

As shown in FIG. 3A, the optional qualifiers 308 may
each be associated with a pattern in the set of regular
expression patterns 304. For example, optional qualifiers
322 may be associated with pattern 316. The optional
qualifiers 308 may each be one or more qualifiers designat-
ing desired custom, advanced PCRE signature options, or
other suitable options for processing the pattern associated
with the qualifiers. For example, the qualifiers 322 may
indicate whether or not a start offset (i.e., a position in a
payload of a first matching character of a pattern that
matches in the payload) option of the advanced PCRE
signature options for the pattern 316 is desired.

According to embodiments disclosed herein, the compiler
306 may generate a unified DFA 312 using subpatterns 302
selected from all patterns in the set of one or more regular
expression patterns 304. The compiler 306 may select sub-
patterns 302 from each pattern in the set of one or more
regular expression patterns 304 based on at least one heu-
ristic, as described further below. The compiler 306 may also
generate at least one NFA 314 for at least one pattern 316 in
the set, a portion (not shown) of the at least one pattern 316
used for generating the at least one NFA 314, and at least one
walk direction for run time processing (i.e. walking) of the
at least one NFA 314, may be determined based on whether
a length of the subpattern selected 318 is fixed or variable
and a location of the subpattern selected 318 within the at
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least one pattern 316. The compiler 306 may store the
unified DFA 312 and the at least one NFA 314 in the at least
one memory 104.

The compiler may determine whether length of the poten-
tial subpatterns selected is fixed or variable. For example,
length of a subpattern such as “cdef” may be determined to
have a fixed length of 4 as “cdef” is a string, whereas
complex subpatterns including operators may be determined
as having a variable length. For example, a complex sub-
pattern such as “a.*cd["\n] {0,10}.*y” may have “cd["\n]{0,
10}” as the subpattern selected, that may have a variable
length of 2 to 12.

According to embodiments disclosed herein, subpattern
selection may be based on at least one heuristic. A subpattern
is a set of one or more consecutive elements from a pattern,
wherein each element from the pattern may be represented
by a node in a DFA or NFA graph, for purposes of matching
bytes or characters from the payload. An element, as
described above, may be a single text character represented
by a node or a character class represented by a node. The
compiler 306 may determine which subpatterns in the pat-
tern are better suited for NFA based on whether or not a
subpattern is likely to cause excessive DFA graph explosion,
as described above in reference to FIGS. 2A-G. For
example, generating a DFA from a subpattern including
consecutive text characters would not result in DFA graph
explosion, whereas complex subpatterns, as described
above, may include operators as well as characters and, thus,
may cause DFA graph explosion. For example, a subpattern
including a wild card character or a larger character class
repeated multiple times (e.g., [A\n]* or ["\n] {16}) may
cause excessive states in a DFA and, thus, may be more
advantageously suited for NFA. As such, the compiler 306
may be referred to herein as a “smart compiler.”

As disclosed above, selecting a subpattern from each
pattern in the set of one or more regular expressions 304 may
be based on at least one heuristic. According to one embodi-
ment, the at least one heuristic may include maximizing a
number of unique subpatterns selected and length of each
subpattern selected. For example, a pattern such as
“ab.*cdef.*mn” may have multiple potential subpatterns,
such as “ab.*,” “cdef,” and “.*mn”. The compiler may select
“cdef” as the subpattern for the pattern because it is a largest
subpattern in the pattern “ab.*cdef.*mn” that is unlikely to
cause DFA graph explosion. However, the compiler may
select an alternate subpattern for the pattern “ab.*cdef.*mn”
if the subpattern “cdef” has already been selected for another
pattern. Alternatively, the compiler may replace the subpat-
tern “cdef” with another subpattern for the other pattern,
enabling the subpattern “cdef” to be selected for the pattern
“ab.*cdef*mn.”

As such, the compiler 306 may select subpatterns for the
patterns 304 based on a context of possible subpatterns for
each of the patterns 304, enabling maximization of the
number of unique subpatterns selected and length of each
subpattern selected. As such, the compiler 306 may generate
a unified DFA 312 from the subpatterns selected 302 that
minimizes a number of false positives (i.e., no match or
partial match) in pattern matching of the at least one NFA
314 by increasing the probability of a pattern match in the
at least one NFA 314.

By maximizing subpattern length, false positives in NFA
processing may be avoided. False positives in NFA process-
ing may result in non-deterministic run time processing and,
thus, may reduce run time performance. Further, by maxi-
mizing a number of unique subpatterns selected, the com-
piler 306 enables a 1:1 transition between the unified DFA
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to the at least one NFA 314 generated from a pattern in the
set given a match of a subpattern (from the pattern) in the
unified DFA.

For example, if the subpattern selected was shared by
multiple patterns, then a walker of the unified DFA would
need to transition to multiple at least one NFAs because each
at least one NFA is a per-pattern NFA, and the subpattern
match from the unified DFA signifies a partial match for
each of the multiple patterns. As such, maximizing the
number of unique subpatterns reduces a number of DFA:
NFA 1:N transitions, reducing run time processing by the
walker 320.

To enable maximizing the number of unique subpatterns,
the compiler 302 may compute a hash value 326 of the
subpattern selected 318 and store the hash value computed
326 in association with an identifier (not shown) of a pattern
316 from which the subpattern 318 was selected. For
example, the compiler 306 may, for each pattern in the set
304, compute a hash value of the subpattern selected. The
hash values computed 324 may be stored in the at least one
memory 104 as a table, or in any suitable manner. The hash
method used may be any suitable hash method. The com-
piler may compare the hash value computed to a list of hash
values of subpatterns selected for other patterns in the set, in
order to determine whether or not the subpattern selected is
unique.

If the hash value computed is found in the list, the
compiler may determine whether to replace (i) the subpat-
tern selected with another subpattern from the pattern or (ii)
the subpattern selected for another pattern in the set with an
alternate subpattern selected from the other pattern in the set.
The other pattern in the set may be identified based on an
association with the hash value computed in the list. The
determination for whether to replace (i) or (ii) may be based
on comparing lengths of subpatterns being considered for
the replacement in order to maximize lengths of the unique
subpatterns being selected, as described above. Replacing a
subpattern selected may include selecting a next longest
subpattern identified for a given pattern, or a next highest
prioritized subpattern. For example, potential subpatterns
may be prioritized based on likely of resulting in DFA
explosion or a magnitude of the DFA explosion expected.

According to embodiments disclosed herein, the at least
one heuristic may include identifying subpatterns of each
pattern and disregarding a given subpattern of the subpat-
terns identified of each pattern, if the given subpattern has a
length less than a minimum threshold. For example, to
reduce false positives in the at least one NFA, the compiler
may disregard subpatterns with lengths less than the mini-
mum threshold because such subpatterns may result in
higher probability of a false positive in the at least one NFA.

The at least one heuristic may include accessing a knowl-
edge base (not shown) of subpatterns associated with his-
torical frequency of use indicators and disregarding a given
subpattern of the subpatterns identified of each pattern, if a
historical frequency of use indicator for the given subpattern
in the knowledge base accessed is greater than or equal to a
frequency use threshold. For example, application or proto-
col specific subpatterns may have a high frequency of use,
such as for HyperText Transfer Protocol (HTTP) payloads,
“carriage return line feed”, or clear traffic such as multiple
consecutive Os from binary files, or any other frequently
used subpattern.

The at least one heuristic may include identifying sub-
patterns of each pattern and for each pattern, maximizing a
number of consecutive text characters in the subpattern
selected by selecting a given subpattern of the subpatterns
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identified based on the given subpattern having a largest
number of consecutive text characters of the subpatterns
identified and based on the given subpattern being unique
among all subpatterns selected for the set of one or more
regular expressions. As disclosed above, maximizing length
of the subpattern selected may enable higher probability of
a match in the at least one NFA.

The at least one heuristic may include prioritizing given
subpatterns of each pattern based on a subpattern type of
each of the given subpatterns and lengths of the given
subpatterns. The subpattern type may be text only, alterna-
tion, single character repetition, or multi-character repeti-
tion, and a priority order from highest to lowest for the
subpattern type may be text only, alternation, single char-
acter repetition, and multi-character repetition. As such,
subpatterns that are text strings having a length of at least a
minimum length threshold may be prioritized higher than
complex subpatterns of variable length.

The compiler 306 may prioritize a longer length subpat-
tern over another subpattern of lesser length. The compiler
306 may select a unique subpattern as the subpattern
selected, based on the prioritizing. As described above, the
unique subpattern selected may have a length of at least a
minimum length threshold.

The compiler 306 may select a non-unique subpattern as
the subpattern selected, based on the prioritizing, if none of
the given subpatterns are unique and have a length of at least
the minimum length threshold. As such, the compiler 306
may select a subpattern from a pattern that is a duplicate of
a subpattern selected from another pattern rather than select
a subpattern having a length less than the minimum thresh-
old. To facilitate finalizing of subpatterns, the compiler 306
may perform multiple passes over the patterns and sort
possible subpatterns by length. As such, compiler subpattern
selection for a given pattern in the set of one or more regular
expressions 304 may be performed within a context of
subpattern selection for other patterns in the set of one or
more regular expressions 304.

As described above, the qualifiers 322 may indicate that
reporting of a start offset is desired. However, the start offset
may not be easily discernible. For example, finding a start
offset in a payload matching patterns such as “a.*b” or
“a.*d” may be difficult given a payload such as “axycamb”
because two patterns may be matching, “axycamb” and
“amb.” As such, offsets for both instances of “a” in the
payload may need to be tracked as potential start offsets.
According to embodiments disclosed herein, potential start
offsets need not be tracked, as the start offset is not deter-
mined until a match of the entire pattern is determined to
have been found in a payload. Determining the match of the
entire pattern may be found utilizing match results from the
unified DFA, the at least one NFA, or a combination thereof.

According to embodiments disclosed herein, if a payload
in the received packets 101 includes content that matches a
subpattern selected 318 from a pattern 316, the walker may
transition to walk at least one NFA for the pattern 318. The
walker 320 may report a match of the subpattern selected
318 and an offset that identifies a location in the received
packets of the last character of the matching subpattern as an
end offset for the subpattern in the payload. A subpattern
match may be a partial match for the pattern if the subpattern
is a subset of the pattern. As such, the walker 320 may
continue the search for the remainder of the pattern in the
payload by walking at least one NFA for the pattern, in order
to determine a final match for the pattern. It should be
understood that the pattern may traverse one or more pay-
loads in the received packets 101a.
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FIG. 3B is a flow diagram (350) of an example embodi-
ment of a method that may be implemented in at least one
processor operatively coupled to at least one memory in a
security appliance operatively coupled to a network. The
method may begin (352) and select a subpattern from each
pattern in a set of one or more regular expression patterns
based on at least one heuristic (354). The method may
generate a unified deterministic finite automaton (DFA)
using the subpatterns selected from all patterns in the set
(356). The method may generate at least one non-determin-
istic finite automaton (NFA) for at least one pattern in the
set, a portion of the at least one pattern used for generating
the at least one NFA, and at least one walk direction for run
time processing of the at least one NFA, being determined
based on whether a length of the subpattern selected is fixed
or variable and a location of the subpattern selected within
the at least one pattern (358). The method may store the
unified DFA and the at least one NFA generated in the at
least one memory (360). The method thereafter ends (362)
in the example embodiment.

As disclosed above, the compiler 306 may generate the
unified DFA 312 and the at least one NFA 314 to enable the
walker 320 to search for matches of one or more regular
expression patterns 304 in received packets 101a. The
compiler 306 may select a subpattern from each pattern in
the set of one or more regular expression patterns 304 based
on at least one heuristic. The unified DFA 312 may be
generated using the subpatterns selected 302 from all pat-
terns in the set 304. The compiler 306 may generate at least
one NFA 314 for at least one pattern 316 in the set 304. As
such, the compiler 306 may be configured to compile the
rule set 310 into the binary image 112 identifying portions
from the rule set 310 that may be best suited for DFA or NFA
processing. Thus, the binary image 112 may include at least
two sections with a first section for DFA processing and a
second section for NFA processing, such as the unified DFA
312 and the at least one NFA 314. As disclosed above, the
binary image 112 may include compiled rules data for both
DFA and NFA, or may be multiple binary images separating
DFA compiled rules data from NFA compiled rules data. For
example NFA compiled rules may be separated from DFA
compiled rules and stored in a graph memory operatively
coupled to the HNA 108. The memory 104 may be a graph
memory that may be multiple memories, such as the graph
memory 456, disclosed below with regard to FIG. 4.

FIG. 4 is a block diagram 450 of an example embodiment
of an environment of the HNA 108 of FIG. 1. According to
embodiments disclosed herein, the HFA 110 may be con-
figured to implement functionality of the walker 320 with
reference to DFA processing and the HNA 108 may be
configured to implement functionality of the walker 320
with reference to NFA processing.

According to embodiments disclosed herein, the HNA
108 may be configured to read at least one instruction 453
from an instruction queue 454. The instruction queue 454
may be configured to store the at least one instruction 453
that may be sent by a host (not shown) to be processed by
the HNA 108. The at least one instruction 453 may include
at least one job, such as S1 459a, S2 4595, or S3 459¢. Each
at least one job may be determined based on partial match
results identified by the HFA co-processor 110 of FIG. 1 for
a given subpattern of the subpatterns 302 of FIG. 3A that is
matching in the input stream.

A given job of the at least one job may indicate a given
NFA of the at least one NFA 314, at least one given node of
the given NFA, at least one given offset in a given payload,
as well as at least one walk direction, each at least one walk
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direction corresponding to one node of the at least one given
node. Each at least one job may include results of processing
by the HFA, enabling the HNA to advance a match in the
given NFA for a given pattern of the at least one pattern 304
that corresponds to the given subpattern. As such, each job
represents partial match results determined by the HFA
co-processor 110 in order to advance the match of the given
pattern by the HNA co-processor 108.

The HNA 108 may process the at least one instruction 453
by reading at least one pointer (not shown), or other suitable
instruction information, stored therein. The at least one
pointer may include an input buffer pointer (not shown) to
an input buffer 458. The at least one instruction 453 may also
include a payload pointer (not shown) to a payload 462, a
result buffer pointer (not shown) to a match result buffer 466,
a save buffer pointer (not shown) to a save buffer 464, and
a run stack pointer (not shown) to a run stack 460.

The input buffer 458, run stack 460, and the save buffer
464 may be referred to herein as an input stack, run stack,
and save stack, respectively, although the input buffer 458,
run stack 460, and save buffer 464 may or may not exhibit
the Last In First Out (LIFO) properties of a stack. The input
buffer 458, run stack 460, and save buffer 464 may be
located within a same or different physical buffer. If located
within the same physical buffer, entries of the input stack
458, run stack 460, and save stack 464 may be differentiated
based on a field setting of the entries, or differentiated in any
other suitable manner. The input stack 458 and the run stack
460 may be located in the same physical buffer that may be
on-chip and the save buffer 464 may be located in another
physical buffer that may be off-chip.

The at least one job, such as S1 459q, S2 4595, or S3
459¢, of the at least one instruction 453, may be stored in the
input stack 458 for processing by the HNA 108. The at least
one job of the at least one instruction may each belong to a
same given payload, such as the payload 462, that was
processed by the HFA 110.

The HNA 108 may be configured to load (i.e., fetch or
retrieve) at least one job from the input buffer 458, such as
jobs S1 4594, S2 4595, or S3 459¢, based on the input buffer
pointer. The HNA 108 may push (i.e., store) the at least one
job to the run stack 460. The HNA 108 may pop (i.e., read,
fetch, load, etc.) a given job from the run stack, such as entry
S1 459a, S2 459b, or S3 459¢, and process the given job.
Each at least one job (e.g., S1 4594, S2 4595, or S3 459¢)
may include a payload offset (not shown) to a segment (not
shown) of the payload 462, and a pointer to a graph 457, that
may be a given finite automaton of at least one finite
automaton, such as the at least one NFA 314 of FIG. 3A.

The HNA 108 may load (i.e., fetch) the graph 457 from
the graph memory 456 that may be included in the binary
image 112 of FIG. 1 and FIG. 3A, and begin processing the
graph 457 using payload segments corresponding with
respective payload offsets of the payload 462. The graph
memory 456 may be multiple memories. The graph memory
456 may be operatively coupled to the HFA 110 as well as
the HNA 108. The HNA 108 may process the graph 457, by
walking nodes of the graph 457 with payload segments. A
partially matching path of the graph 457 may include at least
two nodes of the graph 457 that match consecutive segments
of the payload to a given pattern used to generate the graph
457. The partially matching path may be referred to herein
as a thread or an active thread.

As the HNA 108 may process the graph 457 using payload
segments from the payload 462, pushing and popping entries
to/from the run stack 460 to save and resume its place in the
graph 457. For example, the HNA 108 may need to save its
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place in the graph if a walked node presents multiple options
for a next node to walk. For example, the HNA 108 may
walk a node that presents multiple processing path options,
such as a fork represented in the graph. According to
embodiments disclosed herein, nodes of a DFA or NFA may
be associated with a node type. Nodes associated with a split
type may present multiple processing path options. The split
node type is further disclosed below in reference to FIG. 5A.

According to embodiments disclosed herein, the HNA
108 may be configured to select a given path, of the multiple
processing paths, and push an entry to the run stack 460 that
may enable the HNA 108 to return and proceed along the
unselected path, of the multiple processing paths, based on
determining a mismatch (i.e., negative) result at walked
node along the selected path. As such, pushing the entry on
the run stack 460 may save a place in the graph 457 that
represents unexplored context. The unexplored context may
indicate a given node of the graph 457 and a corresponding
payload offset to enable the HNA 108 to return to the given
node and walk the given node with the given segment of the
payload 462, as the given segment may be located at the
corresponding payload offset in the payload 462. As such,
the run stack 460 may be used to enable the engine to
remember and later walk an unexplored path of the graph
457. Pushing or storing an entry that indicates a given node
and a corresponding offset in a given payload may be
referred to herein as storing unexplored context, thread or
inactive thread. Popping, fetching, or loading an entry that
indicates the given node and the corresponding offset in the
given payload in order to walk the given node with a
segment located at the corresponding offset in the given
payload may be referred to herein as activating a thread.
Discarding an entry that indicates the given node and the
corresponding offset in the given payload may be referred to
herein as flushing an entry or retiring a thread.

The run stack 460 may enable the HNA 108 to save its
place in the graph 457 in an event that an end of the payload
462 is reached while walking segments of the payload 462
with the graph 457. For example, the HNA 108 may deter-
mine that the payload or a portion of the payload 462 is
partially matching a given pattern and that a current payload
offset of the payload 462 is an end offset of the payload 462.
As such, the HNA 108 may determine that only a partial
match of the given pattern was found and that the entire
payload 462 was processed. As such, the HNA 108 may save
the run stack 460 content to the save buffer 464 to continue
a walk with a next payload corresponding to a same flow as
the payload 462 that was processed. The save buffer 464
may be configured to store at least one run stack entry of the
run stack 460, mirroring a running state of the run stack 460
in an event the entire payload 462 is processed.

Based on finding a final (i.e., entire or complete) match of
the pattern, the HNA may pop and discard entries in the run
stack 460 that are associated with the current job, for
example the job loaded from the input buffer, such as S1
459q, and save match results (not shown) to the match
results buffer 466. Alternatively, the HNA 108 may continue
processing entries of the run stack 460 that are associated
with the current job as all possible matching paths may be
of interest.

The match results may include a node address associated
with a node at which the final match of the pattern was
determined. The node at which the final match of the pattern
was determined may be referred to herein as a marked node.
The node address, or other identifier of a final match location
in the graph 457, identifier of the matching pattern, length of
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the matching pattern, or any other suitable match results or
a combination thereof, may be included in the match results.

Based on processing all of the run stack entries associated
with the current job, the HNA 108 may load a next job from
the run stack that has been previously loaded from the input
buffer 458 (e.g., S2 4595), as the HNA 108 may be config-
ured to process jobs of the instruction 453 sequentially. As
such, the HNA 108 may fetch a next graph (not shown) from
the graph memory 456 walk the next graph with one or more
payload segments from the payload 462 identified by the
next job, and continue to process additional jobs until the run
stack 460 is empty.

Based on finding a mismatch of the payload 462 while
walking the graph 457 with the payload 462, the HNA 108
may pop an entry from the run stack 460 that is associated
with the current job (e.g., S1 459a) and walk a next node
with a next segment of the payload 462 based on content of
the entry popped. If the run stack 460 does not include an
entry associated with the current job, the HNA 108 may be
done with the current job and may load a next job from the
run stack 460 that has been previously loaded from the input
buffer 458 (e.g., S2 4595). As such, the HNA 108 may be
configured to walk a next graph based on the next job
loaded, and continue to process additional jobs until the run
stack 460 is empty.

FIG. 5A is a block diagram 500 of an example embodi-
ment of a per-pattern NFA graph 504 that may be used by the
walker 320 to match a regular expression pattern 502 in an
input stream (not shown). As disclosed above, the HNA 108
may be configured to implement functionality of the walker
320 with respect to NFA processing.

In the example embodiment, the input stream may include
a packet (not shown) with a payload 542. The regular
expression pattern 502 is a pattern “h["\n]*ab” that specifies
the character “h” followed by an unlimited number of
consecutive characters not matching a newline character
(ie., ["\n]*). The unlimited number may be zero or more.
The pattern 502 further includes the characters “a” and “b”
consecutively following the unlimited number of characters
not matching the newline character. In the example embodi-
ment, the payload 542 includes segments 522a-d (i.e., h, x,
a, and, b), with respective offsets 520a-d (i.e., 0, 1, 2, and 3)
in the payload 542.

It should be understood that the regular expression pattern
502, NFA graph 504, payload 542, segments 522a-d, and
offsets 520a-d represent examples used for illustrative pur-
poses and that the system, methods, and corresponding
apparatus disclosed herein may apply to any suitable regular
expression pattern, NFA graph, payload, segments, and
offsets. Further, it should be understood that the NFA graph
504 may be a sub-section of a larger NFA graph (not shown).
In addition, the payload 542 may a portion of a larger
payload (not shown) and the portion may be at the begin-
ning, end, or any location of the larger payload, resulting in
offsets different from those in the example embodiment.

In the example embodiment, the NFA graph 504 is a
per-pattern NFA graph configured to match the regular
expression pattern 502 to the input stream. For example, the
NFA graph 504 may be a graph including a plurality of
nodes generated by the compiler 306, such as nodes NO 506,
N1 508, N2 510, N3 512, N4 514, and N5 515. The node NO
506 may represent a starting node for the pattern 502, and
the node N5 515 may represent a marked node for the
pattern 502. The marked node N5 515 may be associated
with an indicator (not shown) that reflects a final (i.e., entire
or complete) match of the pattern 502 matched to the input
stream. As such, the walker 320 may determine that the
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pattern 502 is matching in the input stream based on
traversing the marked node N5 515 and detecting the
indicator. The indicator may be a flag or field setting of
metadata (not shown) associated with the marked node or
any other suitable indicator.

According to embodiments disclosed herein, the walker
320 may walk the segments 522a-d of the payload 542 one
segment at a time through the NFA graph 504 to match the
regular expression pattern 502 to the input stream. A given
segment of the segments 516 for walking a given node may
be determined based on its respective offset of the offsets
518 being a current offset within the payload 542. According
to embodiments disclosed herein, the walker 320 may
update the current offset by incrementing or decrement the
current offset. For example, the walker 320 may walk the
NFA graph 504 in a forward or reverse direction, and, thus,
may walk segments from the payload 542 in a forward 543
or a reverse 546 direction, by respectively incrementing or
decrementing the current offset.

The nodes N0 506, N2 510, N3 512, and N4 514, may be
configured to match a respective element to a given segment
of the payload 542, whereas nodes N1 508 and N5 515 may
be nodes of a node type indicating no matching functional-
ity, and, thus, would not process from the payload 542. In the
example embodiment, node N1 508 is a split node present-
ing multiple transition path options to the walker 320. For
example, walking the split node N1 508 presents epsilon
paths 530qa and 5305. According to embodiments disclosed
herein, the walker 320 may select a given path of the
multiple paths 530a and 53056 based on an implicit setting
that is in mutual agreement with the walker 306. For
example, the compiler 306 may generate the NFA graph 504
based on an implicit understanding that the walker 320
follows a deterministic path, for example, with the implicit
understand that the walker 320 selects an upper epsilon path
530a based on walking the split node N1 508. According to
embodiments disclosed herein, the upper epsilon path 530a
may be selected as the upper epsilon path 530a represents a
lazy path. The lazy path may be the path representing the
shortest possible match of elements.

According to embodiments disclosed herein, the split
node N1 508 may be associated with split node metadata
(not shown) to present the multiple path options. For
example, the split node metadata may indicate, either
directly or indirectly, multiple next nodes, such as the nodes
N2 510 and N3 512, in the example embodiment. If the
multiple next nodes are indicated directly, the metadata may
include absolute addresses or pointers to the next nodes N2
510 and N3 512. If the multiple next nodes are indicated
indirectly, the metadata may include indices or offsets that
may be used to resolve absolute addresses of the next nodes
N2 510 and N3 512 or pointers to the next nodes N2 510 and
N3 512. Alternatively, other suitable forms for directly or
indirectly indicating next node addresses of the multiple
next nodes may be used.

The implicit understanding may include configuring the
walker 320 to select a given next node of multiple next
nodes based on node metadata included in a particular entry
location within the split node metadata. The compiler 306
may be configured to generate the split node metadata
including an indication of the given next node at the des-
ignated entry location. As such, the implicit understanding
that a given path, such as the upper epsilon path 5304, will
be selected by the walker 320 at the split node N1 508 may
be used by the compiler 306 generating the NFA graph 504.

FIG. 5B is a table 538 of an example embodiment of
processing cycles for walking the per-pattern NFA graph of
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FIG. 5A with a payload 542. It should be understood that a
processing cycle may include one or more clock cycles.

As shown in the table 538, the processing cycles 540a-/
may include walking a current node 530 with a segment
from the payload 542 at a current offset 532 to determine a
match result 534 and walker action 536 based on the match
result 534. In the example embodiment, the node NO 506
may have a character node type. For example, the node NO
506 may be a character node that is configured to match the
character “h” in the input stream. In the example embodi-
ment, the walker 320 may walk the starting node NO 506
with the segment 5224 (i.e., “h™) at the current offset 520q
in the processing cycle 540aq.

The walker 320 may determine that the match result 534
is a positive match result as the segment 522a matches
character “h” at the node NO 506. As specified by the
compiler 306 via metadata (not shown) associated with the
starting node NO 506, the walker 320 may walk in a forward
direction and fetch the next node indicated by the metadata
associated with the node NO 506 and may increment the
current offset from 520a (i.e., “0”) to 5206 (i.e., “1”). The
next node indicated by the node NO 506 is the split node N1
508 in the example embodiment. As such, the walker 320
takes the action 536 for the processing cycle 540qa that
includes updating the current offset to “1” in the payload 542
and transitioning to the split node N1 508. Transitioning may
include fetching (also referred to herein as loading) the split
node N1 508.

As the split node N1 508 presents multiple transition path
options, such as the epsilon paths 530a and 5305, the action
536 for the processing cycle 5405 may include selecting the
upper epsilon path 530a and fetching the node N2 510
independent of the payload 542 and without consuming (i.e.,
processing) from the payload 542. Since no matching func-
tion is performed by the split node N1 508, the current
offset/segment 532 are unchanged, and, thus, payload is not
consumed (i.e., processed) for the processing cycle 5405.

Since the split node N1 508 presents multiple path
options, the action 536 may include storing unexplored
context, such as by storing an indirect or direct identifier of
the node N3 512 and the current offset 5206 (i.e., “1”). The
selected transition path may be referred to herein as the
current or active thread and each untraversed transition path
that is stored may be referred to herein as a stored thread.
Each thread may be identified by a corresponding node
identifier and offset in a payload. As such, the unexplored
context may identify an unexplored thread (i.e., path).

Storing the unexplored context may enable the walker 320
to remember to return to the node N3 512 to walk the node
N3 512 with the segment “1” at the offset 52056 in the
payload 542 in an event a negative match result occurs along
the selected partially matching path, for example, if the
negative match result is determined at the node N2 510 or
nodes along a path extending from the node N2 510.
According to embodiments disclosed herein, the unexplored
context may be marked with a Discard Unexplored Process-
ing (DUP) indicator that indicates to the walker 320 whether
to discard or process the unexplored context in an event a
final match for the pattern 502 is identified along the selected
transition path.

For example, based on reaching the marked node N5 515
that indicates the final (i.e., complete or entire) match for the
pattern 502 in the input stream, the walker 320 may utilize
the DUP indicator to determine whether to process the
unexplored context by walking the node N3 512 with the
segment “x” at the offset 52056 in an effort to determine
another path of the NFA graph 504 that matches the pattern
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502, or whether to discard the unexplored context. Marking
the unexplored context with the DUP indicator may include
marking the unexplored context in any suitable manner, such
as by setting a bit or field associated with the unexplored
context to true, to signify desired processing of the stack
entry, or false to signify a desired discard of the stack entry.

Whether or not a stored thread is traversed may be
determined by the compiler 306. For example, the compiler
306 may control whether or not the DUP indicator is set by
configuring a setting in corresponding metadata for each
node. Alternatively, the compiler 306 may configure a global
setting included in global metadata associated with the finite
automata, specifying that all stored threads are to be tra-
versed, enabling all possible matches to be identified.

In the example embodiment, the selection of the epsilon
transition path 530a may result in detecting a match failure
at the node N2 510 or at a subsequent node, such as N4 514,
of the current thread. As such, if a match failure is detected,
the stored thread for the epsilon transition path 5305 may
then be traversed. Alternatively, if specified by the compiler
306, the epsilon transition path 5305 may be traversed
regardless of whether or not traversing the epsilon transition
path 5305 results detection of a match failure.

Storing the untraversed transition path may include push-
ing an entry on a stack, such as the run stack 460 of FIG. 4,
by storing an identifier of the next node N3 513 in associa-
tion with an indication of the current offset 5205 in the entry.
The identifier of the next node N3 513 may be a value,
pointer, or any other suitable indicator of the next node. The
value of the offset may be a numeric value, pointer, or any
other suitable value identifying locations of segments 516
within the payload 542.

According to the example embodiment, based on select-
ing the upper path (i.e., the epsilon transition path 530q) the
walker 320 may fetch node the N2 510 and try to match the
segment 5225 (i.e., “x”) at the current offset 5205 (i.e., “1’)
to the element “a” of the node N2 510 in the processing cycle
540c. Since “x” does not match element “a” at the node N2
510, the action 536 for the processing cycle 540¢ may
include popping an entry from the run stack 460. The entry
popped 5445 may be a most recently pushed entry, such as
a stored entry 544q indicating the node N3 512 and offset
52056 (i.e., “17) in the example embodiment.

The walker 320 may transition and walk the node N3 512
and with the segment “x” located at the offset 5204 in the
payload 542. As such, the processing cycle 5404 shows the
match result 534 is positive for processing cycle 5404. The
action 536 for the processing cycle 5404 may include
updating the current offset to the offset 520¢ and transition-
ing back to the split node N1 508 that may be a next node
indicated by the node N3 512.

Since all arcs transitioning from the split node N1 508 are
epsilon transitions, the walker 320 may again select a path
of the multiple path options and does not consume (i.e.,
process) a segment from the payload 542 as the current
offset is not updated for the processing cycle 540e. In the
example embodiment, the walker 320 again selects the
epsilon transition path 530q. As such, the walker 320 again
stores a thread by pushing node N3 512 and the current
offset, now 520c¢ (i.e., “2”), on the run stack 460. As shown
for processing cycle 5407, the walker 320 fetches node N2
510 and matches the segment 522¢ (i.e., “a”) at offset 520c¢
(i.e., “2”) to the element “a” of the node N2 510. Since “a”
matches at the node N2 510, the walker 320 updates the
current offset to 5204 (i.e., “3”) and transitions to the node
N4 514 that is specified by the node N2 510 metadata (not
shown) as configured by the compiler 306. For example, N2
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510 metadata may specifying a transition 511 from a given
node such as the node N2 510 to a next node such as the
node N4 514 via a next node address (not shown) associated
with the given node N2 510. According to embodiments
disclosed herein, the next node address may be configured to
identify the next node and a given memory of the plurality
of memories 456 to which the compiler 306 distributes the
next node for storing.

As such, for the processing cycle 540g, the walker 320
may fetch the next node N4 514 and the next segment 5224
(i.e., “b”) at the offset 520d. Since “b” matches at the node
N4 514, the walker 320 may transition to the next node N5
515. The node N5 515 is a marked node associated with an
indicator signifying a final (i.e., complete or entire) match of
the regular expression pattern 542 in the input stream. Thus,
for the processing cycle 540/ the walker 320 may discon-
tinue the walk along the current path and report the final
match by storing an entry in the match result buffer 466. The
walker 320 may then check the run stack 460 for stored
threads and either discard the stored threads or activate them
as indicated by the corresponding DUP indicator. As such,
the walker 320 pops the entry that identifies the node N3 512
and the offset 520 (i.e., “2”), and determines whether to
activate the stored thread by walking the node N3 512 with
the segment 522¢ at the offset 520¢ or discard the stored
thread according to the DUP indicator associated with the
popped entry.

Embodiments disclosed herein may enable optimized
match performance due to the combined DFA and NFA type
processing disclosed above. For example, embodiments
disclosed above may reduce a number of false positives in
NFA processing as the NFA processing may be based on
partial matches identified via the DFA processing. Further,
because embodiments disclosed herein include per-rule (i.e.,
per-pattern) NFAs that may be identified by the DFA pro-
cessing, embodiments disclosed herein further optimize
match performance.

As disclosed above, the DFA 312 is a unified DFA and
each at least one NFA 314 is a per-pattern NFA. Walking
payload through the unified DFA 312 by the HFA 110 may
be considered a first parsing block that marks starting points
of patterns (intermediate matches) and provides the starting
point to the at least one NFA 314 that may continue the walk
from the mark to determine a final match. For example,
based on the partial match results determined by processing
segments of payloads of an input stream through the unified
DFA 312, the walker 320 may determine that a given number
of rules (i.e. patterns) of the rule set 310 need to be processed
further, and the HFA 110 may produce pattern match results
that may be converted into the given number of NFA walks
as each at least one NFA 314 is a per-pattern NFA.

FIG. 6 is a block diagram 600 of an example embodiment
of an environment 600 for the walker 320. An input stream
of packets 101a may be received 602 and may include
packets 616a-f that may be packets from different flows,
such as a first flow 614a and a second flow 614b. For
example, packets P1 616a, P4 616d, and P6 616/ may be
packets in the first flow 614a whereas packets P2 6165, P3
616¢, and P5 616e may belong to the second flow 6145. The
processing cores 603 may be general purpose processing
cores of the security appliance 102, as disclosed above with
reference to FIG. 1, that may be configured to perform
higher level protocol processing of the packets 101a and
may be configured to offload the pattern matching methods
to the HFA 110 and HNA 108.

The packets 101a may be forwarded 604 to the HFA 110
and the walker 320 may walk segments of the packets 101a
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through the unified DFA, such as the unified DFA 312 of
FIG. 3A, to determine partial matches of the regular expres-
sion patterns 304 in the input stream. The walker 320 may
be configured to forward 606 results of the partial matches
that may identify offsets of segments of the packets 101a and
nodes of per-pattern NFAs, such as the at least one NFA 314,
to progress the partial matches by the HNA 108 that may
walk the at least one NFA 314 based on the partial match
results of the DFA processing of the HFA 110, as the partial
match results may be forwarded 608 to the HNA 108 with
corresponding packets of the packets 101a.

The HNA 108 may enable a determination that partial
matches 618¢, 6185, and 618a, form a final (i.e., complete)
match to a given regular expression pattern of the regular
expression patterns 304 in the input stream. For example, by
forwarding 606 the HFA partial match results from the HFA
110 to the HNA 108, either indirectly via the processing
cores 603, or directly 605 from the HFA 110, each packet
partially matched by the HFA 110 may enable the HNA 108
to advance the partial match as the walker 320 may walk
segments of the packets 101a through the at least one NFA
314, with “hints” or starting information from the HFA 110.

For example, as disclosed above with regard to FIG. 4, the
input stack 458 may include at least one job, such as S1
4594, S2 4595h, or S3 459c¢, of the at least one instruction
453, for processing by the HNA 108. The at least one job of
the at least one instruction may each belong to a same given
payload, such as the payload 462, that was processed by the
HFA 110. Such “hints” or starting information that may be
based on packet “pre-screening” by the HFA 110 may
include NFA starting nodes with corresponding offsets of
payload segments for walking with a per-pattern NFA, as
disclosed above. As such, the walker 320 may determine
final match results 610 for packets 101a that may be
forwarded to the processing cores 603 from the HNA 108
and the packets 101a may then be forwarded 612 as appro-
priate as the packets 1015 in the network.

In addition to such pre-screening of packets by the HFA
110 that may reduce a number of false positives for NFA
processing, embodiments disclosed herein may further opti-
mize match performance by distributing nodes of each
per-pattern NFA to memories in a memory hierarchy based
on node locality. Since each NFA may be a per-pattern NFA,
embodiments disclosed herein may advantageously distrib-
ute nodes of each per-pattern NFA to memories in a hierar-
chy based on an understanding that the longer the rule (i.e.,
pattern) the less likely it is that nodes generated from
portions at the end of the rule (i.e., pattern) are to be
accessed (i.e., walked or traversed). By storing earlier nodes
of each of the per-pattern NFA in relatively faster (i.e.,
higher performance) memories, embodiments disclosed
herein may further optimize match performance. It should be
understood that because such node distribution may be
based on a hierarchical level to memory mapping, nodes
may be advantageously distributed based on the hierarchical
levels mapped, enabling any suitable distribution that opti-
mizes match performance to be utilized.

As disclosed above, the at least one NFA 314, such as the
per-pattern NFA 504 of FIG. 5A, may be stored in at least
one memory, such as the memory 104 of FIG. 1 or the graph
memory 456 of FIG. 4. According to embodiments disclosed
herein, match performance of the walker 320 may be opti-
mized based on the smart compiler 306 advantageously
distributing nodes of the per-pattern NFA 504 across the at
least one memory 456 that may include multiple graph
memories in a memory hierarchy.
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For example, match performance of the walker 320 may
be optimized based on storing consecutive nodes, such as the
nodes NO 506, N1 508, N2 510, and N3 512, of the section
509 of the per-pattern NFA 504 of FIG. 5A, in a faster
performance memory mapped to a higher hierarchical level
relative to another memory that may be mapped to a lower
hierarchical level in the memory hierarchy that stores the
consecutive nodes N4 514 and N5 515. Since the NFA 504
is a per-pattern NFA generated from a single pattern, such as
the pattern 502, the NFA 504 is separate from other NFAs
generated for other patterns, and, thus, embodiments dis-
closed herein may be based on a recognized locality of nodes
of the per-pattern NFA not present in for nodes of a unified
NFA.

Embodiments disclosed herein may be based on an under-
standing that earlier nodes of a per-pattern NFA graph, such
as the per-pattern NFA graph 504, such as the nodes NO 506,
N1 508, N2 510 and N3 512, may have a higher likelihood
of being traversed than the nodes N4 514 and N5 515
because the nodes N4 514 and N5 515 are located towards
the end of the rule (i.e. pattern) 502, and thus, require that
more of the payload be matched in order to be walked (i.e.
traversed). As such, earlier nodes of a per-pattern NFA, such
as the NFA 504, or any other suitable per-pattern NFA graph,
may be considered to be “high touch” nodes that may be
accessed on a more frequent basis due to false positives than
“low touch” nodes that are more likely only to be accessed
in an event a complete match of the pattern occurs.

According to embodiments disclosed herein, the compiler
306 may distribute nodes of each per-pattern NFA to memo-
ries in a hierarchy based on the understanding of which
nodes in each per-pattern NFA are considered “high touch”
nodes and which are considered to be “low touch” nodes.
Such an understanding may be used to “pre-cache” (i.e.,
statically store) nodes of each per-pattern NFA by distrib-
uting the nodes to memories in a memory hierarchy enabling
an improved match performance. For example, “high touch”
nodes may be distributed to faster memories based on the
understanding that the “high touch” nodes will be accessed
(i.e., walked or traversed) more frequently due to their
locality within the per-pattern NFA.

In general, regular expression access patterns of a unified
NFA, generated based on a set of regular expression pat-
terns, may be random as such access patterns may be based
on the particular payload. Thus, a history of regular expres-
sion access patterns cannot be used to predict further regular
expression access patterns. For example, caching a most
recently traversed node of a unified NFA may provide no
performance benefit to a walker because a next node
accessed within the unified NFA may not be the cached
node.

FIG. 7A is a block diagram of an embodiment of an
environment 700 for the compiler 306. As disclosed above,
the compiler 306 may be referred to herein as a smart
compiler that may be configured to compile the rule set 310
into the binary image 112 by identifying portions of the rule
set 310 that may be best suited for DFA or NFA processing.
Thus, the binary image 112 may include at least two sections
with a first section for DFA processing and a second section
for NFA processing, such as the unified DFA 312 and the at
least one NFA 314, as disclosed above with regard to FIG.
3A. According to embodiments disclosed herein, the HNA
108 may be operatively coupled to multiple memories that
may include the graph memories 456 as disclosed above
with regard to FIG. 4. According to embodiments disclosed
herein, the compiler 306 may be configured to determine

10

15

20

25

30

35

40

45

50

55

60

65

22

placement of nodes of the unified DFA 312 and the at least
one NFA 314 in the graph memories 456.

According to embodiments disclosed herein, the unified
DFA 312 may be statically stored in a given memory of the
graph memories 456 whereas at least one NFA 314 may have
nodes distributed and statically stored across the graph
memories 456 as the compiler 306 may target distributions
of particular NFA nodes for storing in particular memories
for optimizing walker match performance. According to
embodiments disclosed herein the graph memories 456 may
be in a memory hierarchy 743 that may include a plurality
of hierarchical levels 708a-c. The plurality of hierarchical
levels 708a-c may be mapped to the multiple graph memo-
ries 456 that may include memories 756a-c.

The compiler 306 may map the hierarchical levels 708a-c¢
in any suitable manner and the hierarchical levels 708a-c
may be ranked in descending order 712 such that the
hierarchical level 708a may be a highest hierarchical ranked
level 708a and the hierarchical level 708¢ may be a lowest
ranked hierarchical level. The graph memories 756a-¢ may
include a random access memory (RAM) that may be a
highest performance memory that may be co-located with an
on-chip search memory (OSM) on the network services
processor 100. The graph memories 756a-¢ may include a
system memory that may be external and operatively
coupled to the network services processor 100.

The RAM memory may be mapped to the highest ranked
hierarchical level 708a, the OSM may be mapped to the next
highest ranked level 7085, and the system memory may be
mapped to the lowest ranked level 708¢, based on a mapping
according to performance (i.e., read and write access times)
of the memories. However, it should be understood that a
mapping between the plurality of hierarchical levels 708a-c¢
and the graph memories 756a-c may be made in any suitable
manner. For example, the mapping may be based on an
understanding of an application associated with the rule set
310 from which the nodes being distributed to the memories
756a-c may be generated, thus, a highest performance
memory may not be mapped to a highest ranked hierarchical
level. Further, it should be understood that a number of
hierarchical levels in the memory hierarchy 743 and a
number of graph memories 756a-c shown are for illustrative
purposes and may be any suitable number of hierarchical
levels and memories.

As disclosed above, locality of nodes of a per-pattern NFA
may be taken advantage of by the smart compiler 306 by
storing NFA nodes generated from earlier portions of a given
pattern in faster memories. Further, since the probability of
a match of the given pattern is already higher since a partial
match of the given pattern was determined by the DFA
processing of the HFA 110, such embodiments combine to
optimize match performance.

For example, as disclosed above, DFA processing may be
used to reduce a number of false positives found by NFA
processing. Since each NFA may be per-pattern NFA, nodes
of each per-pattern NFA may be advantageously distributed
across a plurality of memories based on a mapping of the
plurality of memories to hierarchical levels of the memory
hierarchy 743. For example, smaller NFAs generated from
relatively shorter length patterns may have all nodes dis-
tributed to a first level and stored in a first memory that is
mapped to the first level, whereas larger NFAs generated
from relatively longer patterns may have a first portion of
nodes distributed to the first level and remaining portions
distributed amongst remaining levels. The first level may be
a highest ranked level that is mapped to a highest perfor-
mance memory.
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As such, earlier nodes of the per-pattern NFAs may be
stored in the highest performance memory. Since earlier
nodes may have a higher likelihood of being traversed due
to a false positive, embodiments disclosed herein may
enable a majority of false positives to be handled via
accesses to memories mapped to higher levels in the
memory hierarchy 743. According to embodiments dis-
closed herein, match performance may be optimized by
enabling a number of accesses to the memory 7564 that is
mapped to a highest ranked hierarchical level, such as the
hierarchical level 7084 in the memory hierarchy 743, to be
relatively higher than a number of accesses to the memory
756¢ that may be mapped to the lowest ranked hierarchical
level 708c.

The memory 756a may be a highest performance memory
that enables, for example, 1300 million transactions per
second, whereas the memory 7565 may be of lesser perfor-
mance that enables 150 million transactions per second, and
the memory 756¢ may be a least performance memory that
enables 12 million transactions per second. Further, accord-
ing to embodiments disclosed herein, an amount of memory
of such higher performance memories mapped to higher
ranked hierarchical levels may be relatively smaller in size
than lower performance memories, such as the memory
756¢, that is mapped to a lowest ranked hierarchical level
708c¢, that may be a relatively large memory in comparison.
For example, the memory 756c may be a system memory
that is external and provides a relatively large amount of
storage capacity limited by an amount of physically attached
memory.

According to embodiments disclosed herein, per-pattern
NFA storage allocation settings 710ac may be configured for
the hierarchical levels 708a-c. The per-pattern NFA storage
allocation settings 710a-¢ may denote a target number of
unique nodes for distributing from each per-pattern NFA to
a respective hierarchical level of the hierarchical levels
708a-c for storing in a given memory mapped to the
respective hierarchical level. The compiler 306 may be
configured to determine the per-pattern NFA allocation
settings 710a-c in a manner that enables the memories
756a-c mapped to the hierarchical levels 708a-c to provide
sufficient storage capacity in an event a per-pattern NFA is
generated for each of the one or more patterns in the rule set
310.

The per-pattern NFA storage allocation settings 710a-c
may denote a target number of unique nodes, of the respec-
tive set of nodes of each per-pattern NFA, for distributing to
at a respective hierarchical level for storing to a given
memory mapped to the respective hierarchical level. For
example, based on the per-pattern NFA storage allocation
setting 710a that is configured for the hierarchical level
708a, the compiler 306 may distribute a first portion 704a of
the respective set of nodes 702a of the per-pattern NFA 714a
and a second portion 7045 of the respective set of nodes
7025 of the per-pattern NFA 7145 for storing in the memory
756a that is mapped to the hierarchical level 708a.

Based on the per-pattern NFA storage allocation setting
7105 that is configured for the hierarchical level 7085, the
compiler 306 may distribute a third portion 706a of the
respective set of nodes 702a of the per-pattern NFA 714a
and a fourth portion 7065 of the respective set of nodes 7025
of the per-pattern NFA 7145 for storing in the memory 7565
that is mapped to the hierarchical level 7085. Such distri-
butions are target distributions as a number of nodes of a
given respective set of nodes may not include the target
number as fewer than the target number may have been
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generated or fewer than the target number may remain in a
respective set for distribution.

In the example embodiment, the per-pattern NFA storage
allocation setting 710c may be configured for the lowest
ranked level 708¢ of the memory hierarchy 743 and may be
specified in a manner that denotes an infinite number. The
memory 756¢ that is mapped to the lowest ranked hierar-
chical level 708¢ in the example embodiment, may be a
system memory that has a relatively large amount of storage.
As such, the compiler 306 may distribute nodes to the
system memory including distributing any remaining undis-
tributed nodes of each respective set of nodes generated for
each of the per-pattern NFAs 714a-b for storing in the
system memory 756c¢.

It should be understood that the hierarchical level to
memory mapping may be inherently understood by the
compiler and, as such, may obviate the specific hierarchical
levels 708a-c. For example, the compiler 306 may configure
the per-NFA storage allocations settings 710a-c and map the
settings directly to the memories 756a-c based on an inher-
ent understanding of the hierarchical level mapping of each
of the memories 756a-¢ in the memory hierarchy 743. It
should also be understood that a number of per-pattern
NFAs, nodes of the per-pattern NFAs, and distributions
shown in FIG. 7A are for illustrative purposes and may be
any suitable number of per-pattern NFAs, nodes, or distri-
butions.

FIG. 7B is a block diagram 721 of an example embodi-
ment of the HNA 108 operatively coupled to the plurality of
memories 756a-c, that may be mapped to the hierarchical
levels 708a-c in the memory hierarchy 743 of FIG. 7A, and
the node cache 451 of FIG. 4. The memory 756a may be a
fastest performance memory relative to the memories 7565
and 756¢. The memory 756a may be mapped to the highest
ranked hierarchical level 708a in the memory hierarchy 743.
The memory 756¢ may be a lowest performance memory
relative to the other memories 7084 and 7085 that are also
operatively coupled to the HNA 108.

The highest ranked memory 756a may be a first memory
co-located 722 on chip with the HNA 108. The memory
7565 may be a next highest ranked memory that is a second
memory co-located 722 on chip with the HNA 108. The
highest ranked memory 7564 may be a highest performance
memory relative to the other memories 7565 and 756¢ that
are operatively coupled to the HNA 108. The highest per-
formance memory 756a may have the fastest read and write
access times. The memory 756¢ may be a slowest perfor-
mance memory may be a largest memory such as an external
memory that is not located on a chip with the HNA 108.

A respective hierarchical node transaction size 723a-c
may be associated with each of the hierarchical levels
708a-c. Each respective hierarchical node transaction size
may denote a maximum number of nodes to fetch from the
given memory mapped to the respective hierarchical level
for a read access of the given memory. For example, the
hierarchical node transaction size 723a may be associated
with the highest hierarchical level 708a. Since the memory
756a is at the highest hierarchical level 708a, the hierarchi-
cal node transaction size 723¢ may denote a maximum
number of nodes to fetch from the memory 7564. Similarly,
since the memory 7564 is at the next highest hierarchical
level 7084, the hierarchical node transaction size 7235 may
denote a maximum number of nodes to fetch from the
memory 7565, and since the memory 756¢ is at the next
lowest hierarchical level 708¢, the hierarchical node trans-
action size 723¢ may denote a maximum number of nodes
to fetch from the memory 756¢.
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FIG. 8 is a block diagram 800 of an example embodiment
of node distributions for multiple per-pattern NFAs. In the
example embodiment, a first NFA 814a is generated for a
pattern 816a of one or more patterns 804, a second NFA
8145 is generated for a second pattern 8165 of the one or
more patterns 804, and a third NFA 814c is generated for a
third pattern 816¢ of the one or more patterns 804.

A first portion of nodes 804a of the first per-pattern NFA
814a is distributed to a hierarchical level 808a that is
mapped to a first memory 8564 in a memory hierarchy 812
and a second portion of nodes 8064 is distributed to a second
hierarchical level 8085 that is mapped to a second memory
856b. In the example embodiment, the hierarchical level
808a is a highest ranked level and the hierarchical level 8085
is a lowest ranked hierarchical level. A third portion of nodes
8045 of a second per-pattern NFA 8145 is distributed to the
hierarchical level 8084 that is mapped to the first memory
8564 in the memory hierarchy 812 and a fourth portion of
nodes 80654 is distributed to the second hierarchical level
8085 that is mapped to the second memory 8565. A fifth
portion of nodes 804c¢ of a third per-pattern NFA 814c¢ is
distributed to the hierarchical level 808a that is mapped to
the first memory 856¢ in the memory hierarchy 812 and a
sixth portion of nodes 806c¢ is distributed to the second
hierarchical level 8085 that is mapped to the second memory
856b.

As shown in FIG. 8, the second portion of nodes 8045 of
the second NFA 8145 distributed for storing in the memory
8564 mapped to the hierarchical level 808a may be less than
the first portion of nodes 804a and the fifth portion of nodes
804c¢ of the first NFA 8144 and the third NFA 814c,
respectively. Such may be the case, for example, if a number
of nodes of the per-pattern NFA 81456 is less than a number
of unique target nodes denoted by a per-NFA storage allo-
cation setting (not shown) for the hierarchical level 808a.
Further, as the hierarchical level 8085 is a the lowest ranked
hierarchical level in the memory hierarchy 812, a next
per-pattern NFA storage allocation setting (not shown) for
the hierarchical level 8085 may be very large, enabling all
undistributed nodes to be distributed for storing in the
memory 856a that is mapped to the hierarchical level 8085,
after distributions have been made to each hierarchical level
that is higher than the hierarchical level 8085. As such, in the
example embodiment, the second node portion 8064 may
include more nodes than the sixth portion 806¢ as the pattern
816a may be a longer rule than the pattern 816¢. Further, the
fourth node portion 8065 may be null as the pattern 8165
may be relatively short with few nodes generated for the
per-pattern NFA 8144 resulting in all nodes of the per-
pattern NFA 8145 being distributed to the hierarchical level
808a for storing in the memory 856a.

The compiler 306 may distribute node of each per-pattern
NFA as part of generating each per-pattern NFA. As dis-
closed above, transition in the NFA from a first node to a
second node may be specified via first node metadata that
identifies the second node via a next node address. Accord-
ing to embodiments disclosed herein, the next node address
may be configured by the compiler 306 to include a portion
that indicates a given memory of the plurality of memories
to which the second node has been distributed for storing.

FIG. 9 is a flow diagram of an example embodiment of a
method 900 that may be performed in at least one processor
operatively coupled to a plurality of memories mapped to
hierarchical levels in a memory hierarchy in a security
appliance operatively coupled to a network. The method
may begin (902) and generate at least one per-pattern
non-deterministic finite automaton (NFA) (904). Each per-
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pattern NFA may be generated for a single regular expres-
sion pattern and may include a respective set of nodes. The
method may distribute nodes of the respective set of nodes
of each per-pattern NFA for storing in the plurality of
memories based on the hierarchical levels mapped and
per-pattern NFA storage allocation settings configured for
the hierarchical levels (908) and the method thereafter ends
(908) in the example embodiment.

FIG. 10 is a block diagram 1000 of an example embodi-
ment of another node distribution for nodes of multiple
per-pattern NFAs. In the example embodiment, node distri-
butions 1004 and 1006 are shown for storing in a first
memory 10564 and a second memory 10565. The distribu-
tion 1004 of each per-pattern NFA 1014a-¢c may be based on
per-pattern NFA storage allocation settings 1010a and 10105
that are configured for the hierarchical levels 10084 and
10085, respectively. The hierarchical levels 1008a and
10085 are mapped to the first memory 10564 and the second
memory 10565, respectively, in the example embodiment.

FIG. 11 is a flow diagram 1100 of an example embodi-
ment of a method for distributing nodes of at least one
per-pattern NFA. According to embodiments disclosed
herein, distributing the nodes of the respective set of nodes
of each per-pattern NFA generated may include distributing
the nodes of the respective set of nodes in a consecutive
manner that includes a first distribution, of the nodes of the
respective set of nodes, for storing in a first memory of the
plurality of memories. The first memory may be mapped to
a highest ranked hierarchical level of the hierarchical levels.
Distributing may include at least one second distribution, of
the nodes of the respective set of nodes, based on at least one
undistributed node remaining in the respective set of nodes
after a previous distribution. Each at least one second
distribution may be for storing in a given memory of the
plurality of memories. The given memory may be mapped to
a given hierarchical level of the hierarchical levels, con-
secutively lower, per distribution, than the highest ranked
hierarchical level.

The consecutive manner may include distributing nodes
from a plurality of nodes of a given per-pattern NFA of the
at least one per-pattern NFA that represent a given number
of consecutive elements of a given regular expression pat-
tern for which the given per-pattern NFA was generated.
Further, according to embodiments disclosed herein, each at
least one second distribution includes at least one next node
identified via a next node address included in metadata
associated with at least one previous node that was distrib-
uted in an immediately preceding second distribution.

The method may begin (1102) and set a given hierarchical
level to a highest ranked hierarchical level in a memory
hierarchy (1104). The method may set a given per-pattern
NFA to a first per-pattern NFA of at least one NFA generated
from a set of one or more regular expression patterns (1106).
The method may check for a number of undistributed nodes
of the given per-pattern NFA (1108). If the number of
undistributed nodes of the given per-pattern NFA is null, the
method may check if the given per-pattern NFA is a last NFA
generated from the set of one of more regular expression
patterns (1116).

If the given per-pattern NFA is the last per-pattern NFA
generated, the method may check if the given hierarchical
level is a lowest ranked hierarchical level (1120) and if the
given hierarchical level is the lowest ranked hierarchical
level the method thereafter ends (1126) in the example
embodiment. However, if the check for whether the given
hierarchical level is a lowest ranked hierarchical level (1120)
is no, the method may set the given hierarchical level to a
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next consecutively lower hierarchical level (1124) and again
set the given per-pattern NFA to the first per-pattern NFA of
at least one NFA generated from the set of one or more
regular expression patterns (1106) and proceed to check for
a number of undistributed nodes of the given per-pattern
NFA (1108). If the number of undistributed nodes of the
given per-pattern NFA is null, the method may proceed as
disclosed above.

If the check for the number of undistributed nodes of the
given per-pattern NFA (1108) is non-zero, the method may
check if the given hierarchical level is the lowest ranked
hierarchical level (1110). If yes, the method may distribute
the number undistributed nodes to a given memory that is
mapped to the given hierarchical level (1114) and the
method may check if the given per-pattern NFA is a last NFA
generated from the set of one of more regular expression
patterns (1116). If yes, the method may proceed as disclosed
above. If no, the method the method may set the given
per-pattern NFA to the next per-pattern NFA generated
(1118) and the method may iterate to check again for the
number of undistributed nodes of the given per-pattern NFA
(1108) which was updated to the next per-pattern NFA
generated.

If the check for whether the given hierarchical level is the
lowest ranked hierarchical level (1110) is no, the method
may check if the number of undistributed nodes of the given
per-pattern NFA exceeds a number of nodes denoted by a
per-pattern NFA storage allocation setting configured for the
given hierarchical level (1112). If yes, the method may
distribute the number of nodes denoted by the per-pattern
NFA storage allocation setting configured for the given
hierarchical level for storing in the given memory that is
mapped to the given hierarchical level (1122) and check
whether the given per-pattern NFA is a last NFA generated
from the set of one of more regular expression patterns
(1116). If yes, the method may proceed as disclosed above.

If the check for whether the given per-pattern NFA is the
last per-pattern NFA generated (1116) is no, the method may
set the given per-pattern NFA to the next per-pattern NFA
generated (1118) and the method may iterate to check again
for the number of undistributed nodes of the given per-
pattern NFA (1108) which was updated to the next per-
pattern NFA generated.

If however, the check for whether the number of undis-
tributed nodes of the given per-pattern NFA exceeds a
number of nodes denoted by a per-pattern NFA storage
allocation setting configured for the given hierarchical level
(1112) is no, the method may distribute the number of
undistributed nodes to the given memory that is mapped to
the given hierarchical level (1114) and proceed as disclosed
above.

According to embodiments disclosed herein, the per-
pattern NFA storage allocation settings may denote a target
number of unique nodes via an absolute value. The absolute
value may be a common value for each respective set of
nodes enabling each respective set of nodes to have a same
value for the target number of unique nodes for storing in the
given memory that is mapped to the respective hierarchical
level. For example, as shown in FIG. 10, each of the
per-pattern NFAs 1014a-c have a first portion 1004 selected
that denotes a same number of nodes from each of the
per-pattern NFAs 1014a-c to be distributed to the memory
10564 that is mapped to the hierarchical level 10084 for with
the per-pattern storage allocation setting 1010a is config-
ured.

Alternatively, the target number of unique nodes may be
denoted via a percentage value for applying to a respective
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total number of nodes of each respective set of nodes
enabling each respective set of nodes to have a separate
value for the target number of unique nodes for storing in the
given memory that is mapped to the respective hierarchical
level. For example, if a number such as 25% were config-
ured for the per-pattern NFA storage allocation setting 1010«
configured for the hierarchical level 1008a, then the first
portion 1004 would include 25% of the nodes from each of
the per-pattern NFAs 1014a-c. Since nodes of each per-
pattern NFA 1014a-c may differ, a number of nodes from
each of the per-pattern NFAs 1014a-c may differ.

The per-pattern NFA storage allocation settings may
include a first per-pattern NFA storage allocation setting and
a second per-pattern NFA storage allocation setting. The
hierarchical levels may include a highest ranked hierarchical
level and a next highest ranked hierarchical level. The first
per-pattern NFA storage allocation setting may be config-
ured for the highest ranked hierarchical level. The second
per-pattern NFA storage allocation setting may be config-
ured for the next highest ranked hierarchical level. The first
per-pattern NFA storage allocation setting may be less than
the second per-pattern NFA storage allocation setting. For
example, a number of nodes from each per-pattern NFA that
are denoted for distribution to a highest performance
memory may be less than a number of nodes denoted for a
lowest performance memory, such as a system memory, that
may have an infinite number denoted.

Embodiments disclosed herein may maximize a number
of' nodes in a given distribution and the number maximized
may be limited by a respective per-pattern NFA storage
allocation setting, of the per-pattern NFA storage allocation
settings, configured for a given hierarchical level. For
example, a number of nodes denoted by a per-pattern NFA
storage allocation setting may be ten. As such, each per-
pattern NFA that includes ten or more undistributed nodes
would have ten nodes distributed. Each per-pattern NFA that
includes less than ten undistributed nodes would distribute a
respective number of undistributed number of nodes.

As disclosed above, a walker, such as the walker 320 of
FIG. 3A, may be configured to walk segments of a payload
of an input stream through nodes of a unified DFA, such as
the unified DFA 312 of FIG. 3A, and at least one per-pattern
NFA, such as the per pattern NFA 314 of FIG. 3A, to try to
match a regular expression pattern in the input stream. The
unified DFA 312 and the at least one per-pattern NFA 314
may be generated by a compiler, such as the compiler 306
of FIG. 3A, during a compilation stage. Nodes of the unified
DFA 312 and the at least one per-pattern NFA 314 may be
stored in a plurality of memories in a memory hierarchy,
such as the plurality of memories 756a-c¢ in the memory
hierarchy 743 of FIG. 7A.

As disclosed above, with regard to FIG. 10 and FIG. 11,
a respective set of nodes of each per-pattern NFA generated
by the compiler 306 may be distributed and stored amongst
one or more memories of the plurality of memories 756a-c
based on a node distribution determined by the compiler 306
for each respective set. Each node distribution may be
determined by the compiler 306 as a function of hierarchical
levels, such as the hierarchical levels 708a-c of FIG. 7A,
mapped to the plurality of memories 756a-c, and per-pattern
NFA storage allocation settings, such as 710a-c, configured
for the hierarchical levels 708a-c, as disclosed above.

As such, the walker 320 may be configured to walk nodes
of the respective set of nodes of a per-pattern NFA 314 that
may be distributed and stored amongst one or more memo-
ries of the plurality of memories 756a-c based on the node
distribution determined by the compiler 306 as a function of
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the hierarchical levels 708a-c mapped to the plurality of
memories 756a-c and the per-pattern NFA storage allocation
settings 710a-c configured for the hierarchical levels 708a-c.
As disclosed above with regard to FIG. 6, the walker 320
may be configured to walk the respective set of nodes of the
per-pattern NFA 314 based on a partial match of the respec-
tive regular expression pattern in the input stream as deter-
mined by the walker 320 during a walk of the unified DFA
312.

FIG. 12 is a flow diagram 1200 of another example
embodiment of a method that may be performed in at least
one processor operatively coupled to a plurality of memories
mapped to hierarchical levels in a memory hierarchy in a
security appliance operatively coupled to a network. The
method may begin (1202) and walk nodes, of a respective
set of nodes of a given per-pattern NFA of at least one
per-pattern NFA generated for a respective regular expres-
sion pattern, with segments of a payload of an input stream
to match the respective regular expression pattern in the
input stream. The respective set of nodes may be distributed
and stored amongst one or more memories of the plurality of
memories based on a node distribution determined as a
function of hierarchical levels mapped to the plurality of
memories and per-pattern NFA storage allocation settings
configured for the hierarchical levels (1204). The method
thereafter ends (1206) in the example embodiment.

The walker 320 may be configured to walk from a given
node to a next node of the respective set of nodes based on
(1) a positive match of a given segment of the payload at the
given node and (ii) a next node address associated with the
given node. The next node address may be configured to
identify the next node and a given memory of the plurality
of memories, such as the plurality of memories 756a-c of
FIG. 7A, in which the next node is stored. For example,
turning to the example embodiment of FIG. 5A, the walker
320 may walk the node N4 514 based on a positive match
of the segment 522¢ at the node N2 510, as the node N2 510
may be configured to match a given segment at a given offset
in a payload to the character element ‘a.” Metadata (not
shown) associated the node N2 510, may identify the next
node, such as the node N4 514, to traverse (i.e. walk) based
on the positive match of the given segment at the given
offset to the character element ‘a.’

For example, the metadata associated with the node N2
510 may include a next node address that is an address of the
node N4 514 or a pointer or index or any other suitable
identifier that identifies the next node N4 514 to traverse
based on the positive match at the node N2 510. The
metadata associated with the node N2 510 may further
identify a given memory of the plurality of memories in
which the next node N4 514 is stored. The given memory
may be identified in any suitable manner, such as by
configuration of particular bits stored in conjunction with
and as part of the next node address (not shown) of the next
node 514. As such, the walker 320 may be configured to
fetch the next node N4 514 from the given memory identi-
fied via the next node address associated with the given node
N2 510 in order to walk the next node N4 514 with a next
segment at a next offset, such as the next segment 5224 at
the next offset 5204 of FIG. 5A.

According to embodiments disclosed herein, the next
node N4 514 may be cached in a node cache. Turning back
to FIG. 4, the example embodiment of an environment of the
HNA 108 of FIG. 1 includes a node cache 451 that may be
operatively coupled to the HNA 108. The node cache 451
may be sized to store at least a threshold number of nodes.
As such, the HNA 108 may cache one or more nodes, up to
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the threshold number of nodes, in the node cache 451. As
disclosed above, the HNA 108 may be configured to imple-
ment the walker 320 aspects with regard to NFA processing.
As such, the walker 320 may retrieve the next node N4 514
from the node cache 451 or the given memory of the
plurality of memories 756a-c based on whether or not a fetch
(i.e., read access) of the next node N4 514 results in a cache
miss. According to embodiments disclosed herein, entries of
the node cache 451 may be replaced based on a round-robin
or least recently used (LRU) replacement policy. The walker
320 may be configured to maintain an index of one or more
entries of the node cache 451 for use in implementing the
round-robin or LRU replacement policies.

If a fetch of the node N4 514 results in a cache miss, the
HNA 108 may fetch the node N4 514 from the given
memory that has the node N4 514 statically stored and also
cache the node N4 514 in the node cache 451. Based on a
hierarchical node transaction size associated with a hierar-
chical level of the given memory, the HNA 108 may cache
additional nodes from the given memory. The node N4 514
and any additional nodes cached may be arranged in a
consecutive manner in a respective per-pattern NFA. For
example, based on the hierarchical node transaction size
associated with the hierarchical level of the given memory,
the HNA 108 may cache the node N5 515 that is arranged
in a consecutive manner with the node N4 514 in the
per-pattern NFA 504.

According to embodiments disclosed herein, a respective
hierarchical node transaction size (not shown) may be
associated with each of the hierarchical levels 708a-c. Each
respective hierarchical node transaction size may denote a
maximum number of nodes to fetch from the given memory
mapped to the respective hierarchical level for a read access
of the given memory. For example, a hierarchical node
transaction size associated with a highest ranked hierarchical
level may have a maximum number of nodes that is one or
two nodes. According to embodiments disclosed herein, the
highest ranked hierarchical level of the hierarchical levels
may be associated with a smallest hierarchical node trans-
action size of hierarchical node transaction sizes associated
with the hierarchical levels.

The hierarchical node transaction size may be denoted in
any suitable manner, such as by specifying a maximum
number of nodes directly, or by specifying a number of bits
that may be a multiple of a size of the maximum number of
nodes denoted. According to embodiments disclosed herein,
the node cache 451 may be organized as multiple lines. Each
line may be sized based on a node bit size and may include
additional bits for the use by the HNA 108. Each line may
be a minimum quantum (i.e., granularity) of a transaction
from each of the plurality of memories.

According to embodiments disclosed herein, a highest
ranked memory may be a memory that is co-located on chip
with the HNA 108. The highest ranked memory may be a
highest performance memory relative to other memories of
the plurality of memories. The highest performance memory
may have the fastest read and write access times. A trans-
action size, for example, a size of the quantum of data read
from the highest performance memory may be one or two
lines, the one or two lines may include one or two nodes,
respectively.

In contrast, a lowest ranked hierarchical level may be
mapped to a lowest performance memory of the plurality of
memories. The lowest performance memory may be a
slowest performance memory having relatively longer read
and write access times in comparison with other memories
of the plurality of memories. For example, the slowest
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performance memory may be a largest memory such as an
external memory that is not located on a chip with the HNA
108. As such, a number of read accesses to such a memory
may be advantageously reduced by having a larger transac-
tion size, such as four lines, per read access.

According to embodiments disclosed herein, the hierar-
chical node transaction size associated with the lowest
ranked hierarchical level may be configured such that one or
more lines from the node cache 451 are evicted and replaced
by one or more lines fetched from the respective memory
that is mapped to the lowest ranked hierarchical level. The
one or more lines may be determined based on the one or
more lines storing the threshold number of nodes. As such,
the respective hierarchical node transaction size may enable
the HNA 108 to cache the threshold number of nodes from
the given memory if the respective hierarchical level is a
lowest ranked hierarchical level of the hierarchical levels. As
such, the HNA 108 may be configured to evict the threshold
number of nodes cached in the node cache 451 if the
respective hierarchical level is a lowest ranked hierarchical
level of the hierarchical levels.

According to embodiments disclosed herein, the node
cache 451 may be configured to cache a threshold number of
nodes. The threshold number of nodes may be a largest
number of nodes that may be read based on a largest
transaction size over all transactions sizes associated with
the plurality of memories. For example, the largest transac-
tion size over all transaction sizes of the plurality of memo-
ries may be a given transaction size that is associated with
a lowest ranked hierarchical level that may be mapped, for
example, to an external memory that is not co-located on a
chip with the HNA 108.

Caching the one or more nodes in the node cache 451 may
be based on a cache miss of a given node of the one or more
nodes read from a given memory of the plurality of memo-
ries and a respective hierarchical node transaction size
associated with a respective hierarchical level of the hier-
archical levels that is mapped to the given memory. The
hierarchical node transaction size associated with the respec-
tive hierarchical level may denote a maximum number of
nodes to fetch from the given memory mapped to the
respective hierarchical level for a read access of the given
memory.

As disclosed above, the HNA 108 may be configured to
employ the LRU or round-robin replacement policy to evict
one or more cached nodes from the node cache 451. Accord-
ing to embodiments disclosed herein, if the respective hier-
archical level mapped to the given memory is higher than a
lowest ranked hierarchical level of the hierarchical levels, a
total number of the one or more cached nodes evicted may
be determined based on the hierarchical level. For example,
if the hierarchical level is associated with a hierarchical node
transaction size of one, the total number of cached nodes
evicted by the node cache may be one, and the entry evicted
may be determined based on the LRU or round-robin
replacement policy. The total number of one is for illustra-
tive purpose and it should be understood that any suitable
hierarchical node transaction sizes may be used.

FIG. 13A is a flow diagram 1300 of an example embodi-
ment of a method that may be performed in at least one
processor operatively coupled to a plurality of memories in
a memory hierarchy and a node cache in a security appliance
operatively coupled to a network. The method may begin
(1302) and store a plurality of nodes of at least one finite
automaton in the plurality of memories (1304). The method
may cache one or more nodes, of the plurality of nodes,
stored in a given memory of the plurality of memories at a
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hierarchical level in the memory hierarchy, in the node cache
based on a cache miss of a given node of the one or more
nodes and a hierarchical node transaction size associated
with the hierarchical level (1306). The method thereafter
ends (1308) in the example embodiment.

FIG. 13B is a block diagram 1341 of an example embodi-
ment of a payload 1342 and segments 1316 with respective
offsets 1318 in the payload 1342. In an example embodi-
ment, nodes of the per-pattern NFA graph 504 of FIG. 5A
may be walked with segments of the payload 1342 of FIG.
13B. For example, the walker 320 may try to match seg-
ments 1316 of the payload 1342 at nodes of the per-pattern
NFA graph 504 to try to match the payload 1342 to the
regular expression pattern 502 of FIG. 5A.

A plurality of nodes of the per-pattern NFA 504 may be
stored in a plurality of memories, such as the memories
756a-c of FIG. 7A. One or more nodes of the plurality of
nodes, such as the nodes NO 506, N1 508, N2 510, and N3
512 of the per-pattern NFA 504 may be stored in a given
memory, such as the highest performance memory 756a of
FIG. 7A, that is at a hierarchical level, such as the highest
ranked hierarchical level 7084, in a memory hierarchy, such
as the memory hierarchy 743. As disclosed below with
regard to FIG. 13C and FIG. 13D, the nodes NO 506, N1
508, N2 510, and N3 512 may be cached in a node cache,
such as the node cache 451 or FIG. 4, based on a cache miss
of'a given node, such as the node NO 506, and a hierarchical
node transaction size 723a associated with the hierarchical
level 708a.

As illustrated in FIG. 13B, the payload 1342 includes the
segments 1322a-r (i.e., h, y, X, etc.), with respective offsets
1320a-2 (ie., 0, 1, 2, etc.). The walker 320 may walk the
segments 13224a-r of the payload 1342 one segment at a time
through the NFA graph 504 to match the regular expression
pattern 502 to the input stream. A given segment of the
segments 1322q-n for walking a given node may be deter-
mined based on its respective offset of the offsets 1320a-»
being a current offset within the payload 1342. The walker
320 may update the current offset by incrementing or
decrement the current offset, as disclosed above with regard
to FIG. 5A. The walker 320 may be configured to select the
upper epsilon path 530a based on traversing the split node
N1 508, as the upper epsilon path 530a represents a lazy
path.

FIG. 13C is a table 13384 of an example embodiment of
processing cycles for walking the per-pattern NFA graph 504
of FIG. 5A with the payload of FIG. 13B by selecting the
lazy path at the split node N1 508.

FIG. 13D is a table 13385 that is a continuation of the
table 13384 of FIG. 13C. As shown in the tables 1338a and
13385, the processing cycles 1340a-mm may include walk-
ing a current node 1330 with a segment at a current offset
1332 to determine a match result 1334 and walker action
1336 based on the match result 1334. In the example
embodiment, the walker 320 may walk the starting node NO
506 with the segment 1322a (i.e., “h”) at the current offset
13204 for the processing cycle 1340a. As disclosed above
with regard to FIG. 6, the starting node NO 506 and the
current offset 1320a may be specified based on match results
from the DFA processing performed by the HFA 110.

The NFA processing by the HNA 108 results in determi-
nation by the walker 320 that the match result 1334 is a
positive match result as the segment 1322¢ matches the
character “h” at the node NO 506 of the per-pattern NFA
504. As specified by the compiler 306 via metadata (not
shown) associated with the starting node NO 506, the walker
320 may walk in a forward direction and fetch the next node
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indicated by the metadata associated with the node NO 506
and may increment the current offset from 1320« (i.e., “0”)
to 13205 (i.e., “17). The next node indicated by the node NO
506 is the split node N1 508 in the example embodiment. As
such, the walker 320 takes the action 1336 for the processing
cycle 1340q that includes updating the current offset to “1”
in the payload 1342 and transitioning to the split node N1
508. Transitioning may include fetching (also referred to
herein as loading) the split node N1 508.

As the split node N1 508 presents multiple transition path
options, such as the epsilon paths 530a and 5305, the action
1336 for the processing cycle 13405 may include selecting
the upper epsilon path 530a and fetching the node N2 510
independent of the payload 1342 and without consuming
(i.e., processing) from the payload 1342. Since no matching
function is performed by the split node N1 508, the current
offset/segment 1332 are unchanged, and, thus, payload is not
consumed (i.e., processed) for the processing cycle 13405.

Since the split node N1 508 presents multiple path
options, the action 1336 may include storing unexplored
context, such as by storing an indirect or direct identifier of
the node N3 512 and the current offset 132056 (i.e.,“17).
Storing the unexplored context may enable the walker 320
to remember to return to the node N3 512 to walk the node
N3 512 with the segment “1” at the offset 13204 in the
payload 1342 in an event a negative match result occurs
along the selected partially matching path, for example, if
the negative match result is determined at the node N2 510
or nodes along a path extending from the node N2 510.

In the example embodiment, the selection of the epsilon
transition path 530a may result in detecting a match failure
at the node N2 510 or at a subsequent node, such as N4 514,
of the current thread. For example, based on selecting the
upper path (i.e., the epsilon transition path 530a) the walker
320 may fetch node the N2 510 and try to match the segment
13225 (i.e., “y”) at the current offset 13205 (i.e., “1”) to the
element “a” of the node N2 510 in the processing cycle
1340c¢. Since “y” does not match element “a” at the node N2
510, the action 1336 for the processing cycle 1340¢ may
include popping an entry from the run stack 460 of FIG. 4.

The entry popped may be a most recently pushed entry,
such as a stored entry pushed in the processing cycle 13405,
indicating the node N3 512 and offset 13205 (i.e.,“1”) in the
example embodiment. As such, if a match failure is detected,
the stored thread for the epsilon transition path 5305 may
then be traversed, as is the case shown for processing cycles
13404, 1340g, 1340/, 1340m, 1340p, 1340s, 1340w, 1340z,
1340cc, 13404, and 1340ii. Storing the untraversed transi-
tion path may include pushing an entry on a stack, such as
the run stack 460 of FIG. 4, by storing an entry including an
identifier of the next node in association with an indication
of the current offset.

The walker 320 may transition and walk the node N3 512
with the segment “y” located at the offset 13206 in the
payload 1342 for the processing cycle 1340d. As such, the
processing cycle 13404 shows the match result 1334 is
positive for the processing cycle 13404 as the element
associated with the node N3 512 indicates a positive match
for a segment that is not a newline character. The action
1336 for the processing cycle 13404 may include updating
the current offset to the offset 1320¢ and transitioning back
to the split node N1 508 that may be a next node indicated
by the node N3 512.

Since all arcs transitioning from the split node N1 508 are
epsilon transitions, the walker 320 may again select a path
of the multiple path options and does not consume (i.e.,
process) a segment from the payload 1342 as the current
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offset is not updated for the processing cycle 1340e. In the
example embodiment, the walker 320 again selects the
epsilon transition path 530q. As such, the walker 320 again
stores a thread by pushing node N3 512 and the current
offset, now 1320c¢ (i.e., “2”), on the run stack 460. As shown
for processing cycle 1340f; the walker 320 fetches node N2
510 and tries to match the segment 1322¢ (i.e., “x”) at offset
1320c¢ (i.e., “2”) to the element “a” of the node N2 510.

Since “x” does not match at the node N2 510, the walker
320 may again pop an entry from the run stack 460. The
entry popped may be a most recently pushed entry, such as
a stored entry pushed in the processing cycle 1340e, indi-
cating the node N3 512 and offset 1320¢ (i.e., “2”) in the
example embodiment. As such, the walker 320 may transi-
tion and again walk the node N3 512 in the processing cycle
1340f'with the segment “x” located at the offset 1320¢ in the
payload 1342. As such, the processing cycle 1340g shows
the match result 1334 is positive, as “x” is not a newline
character, and the action 1336 for the processing cycle
1340g may include updating the current offset to the offset
13204 (i.e., “3”) and transitioning back to the split node N1
508 that may be a next node indicated by metadata associ-
ated with the node N3 512.

The walker 320 may continue to walk segments of the
payload 1342 through the per-pattern NFA 504 as indicated
by the subsequent processing cycles 1340i-mm shown in the
tables 13384 and 13385 of FIG. 13C and FIG. 13D, respec-
tively, until reaching the marked node N5 515. As shown for
the processing cycle 1340mm of table 13385, the walker 320
traverses the marked node N5 515 that may be associated
with metadata that indicates a final (i.e., complete or entire)
match for the regular expression pattern 502 in the input
stream.

In the example embodiment, walking segments of the
payload 1342 through the per-pattern NFA graph 504 may
include identifying a mismatch at the node N3 512, selecting
the lazy path at the split node N1 508 by selecting the upper
epsilon path 530a, and traversing the node N2 510. Based on
a mismatch at the node N2 520, the node N3 512 may again
be traversed and so forth, until a match at the node N2 520
is determined. For example, traversing of the nodes N1 508,
N2 510, and N3 512 occurs in with both temporal and spatial
locality as shown as for the processing cycles 134056-d,
1340¢-g, 1340%-7, 1340k-m, 1340n-p, and 13404-s, until a
positive match at the node N2 510 is determined for the
processing cycle 1340w, and as shown for the processing
cycles 1340x-z, 1340aa-cc, 1340dd-ff, and 1340gg-ii, until a
positive match at the node N2 510 is determined for the
processing cycle 1340k%. Thus, a majority of the processing
cycles of the tables 13384 and 13385 show that the walker
320 may be traversing the nodes N1 508, N2 510, and N3
512, with both temporal and spatial locality.

According to embodiments disclosed herein, employing a
node cache, such as the node cache 451 of FIG. 4, for
walking segments of an input stream through a finite
automaton, enables another optimization for performance of
the walk. For example, as disclosed above with regard to
FIG. 7A, match performance of the walker 320 may be
optimized based on storing consecutive nodes, such as the
nodes NO 506, N1 508, N2 510, and N3 512, of the section
509 of the per-pattern NFA 504 of FIG. 5A, in a faster
performance memory that may at a higher ranked hierarchi-
cal level relative to another memory that may store the
consecutive nodes N4 514 and N5 515.

As disclosed above, earlier nodes, such as the nodes NO
506, N1 508, N2 510, and N3 512 included in the section
509 of the per-pattern NFA 504 of FIG. 5A, may be stored
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in a highest performance memory that may be at a highest
ranked hierarchical level. For example, the nodes NO 506,
N1 508, N2 510, and N3 512, included in the section 509
may be stored in the memory 756a of FIG. 7A that may be
at a highest ranked hierarchical level, such as the hierarchi-
cal level 708a in the memory hierarchy 743. According to
embodiments disclosed herein, the nodes NO 506, N1 508,
N2 510, and N3 512, included in the section 509 may be
stored in the memory756a based on the per-pattern NFA
storage allocation setting 710a that may be configured for
the hierarchical level 708a.

In the example embodiment, a hierarchical node transac-
tion size associated with the highest ranked hierarchical
level 708a, such as the hierarchical node transaction size
723a of FIG. 7B, may denote four nodes in the example
embodiment. For example, the hierarchical node transaction
size 723a may include reading one or more lines from the
memory 756a, for example, data stored at one or more
addresses of the memory 7564 may be read based on a read
access, and four nodes may be read (i.e. retrieved, loaded, or
fetched) from the memory 756a. As such, the hierarchical
node transaction size 723a “denotes” that four nodes are
read from the memory 7564 at the highest ranked hierar-
chical level 708a as four nodes may be read based on a
single read access that causes four nodes to be read. For
example, based on a number of nodes stored per-line (i.e.,
per-address) in a given memory and a number of lines (i.e.
addresses) read from the given memory at a given hierar-
chical level, a number of nodes read per transaction (i.e.,
read access) may be determined. In the example embodi-
ment of FIG. 7B, the memory 7565 may be associated with
a hierarchical node transaction size 7235 and the memory
756¢ may be associated a hierarchical node transaction size
723c.

In the example embodiment, traversing the node NO 506
for the processing cycle 1340a would cause a cache miss, as
the node NO 506 has not been cached in the node cache 451.
As a result, since the hierarchical node transaction size 723a
denotes four nodes in the example embodiment, four nodes,
such as the nodes NO 506, N1 508, N2 510, and N3 512 are
brought from the memory 7564 into the node cache 451.

As a result, the walker 320 may access the nodes N1 508,
N2 510, and N3 512 from the node cache 451 until the
processing cycle 1340v in which the walker traverses the
node N4 514 with the segment 1322g (i.e., “q”) at the offset
1320g (i.e., “8”) in the payload 1342 based on the positive
match at the node N2 510 determined for the processing
cycle 1340u. As such, the node cache 451 may be advan-
tageously employed to enable further optimization of the
walk performance by caching nodes, such as the nodes N1
508, N2 510, and N3 512 in the example embodiment, of a
per-pattern NFA that have a temporal and spatial locality
relationship within the per-pattern NFA. Such a temporal
and spatial locality relationship of nodes within the per-
pattern NFA would not be present for an NFA that is
generated from multiple patterns. The optimization enabled
by the node cache 451 is provided because embodiments
disclosed herein may be based on generating NFAs that are
per-pattern NFAs.

As such, in addition to the pre-screening of packets by the
HFA 110 that may reduce a number of false positives for
NFA processing by the HNA 108, embodiments disclosed
herein may further optimize match performance by caching
nodes during a walk of nodes of per-pattern NFAs that have
nodes distributed to memories in a memory hierarchy based
on node locality within a respective per-pattern NFA. As
disclosed above, embodiments disclosed herein may advan-
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tageously distribute nodes of each per-pattern NFA to
memories in a memory hierarchy based on an understanding
that the longer the rule (i.e., pattern) the less likely it is that
nodes generated from portions at the end of the rule (i.e.,
pattern) are to be accessed (i.e., walked or traversed).
Further, according to embodiments disclosed herein, a node
cache may be advantageously sized based on a maximum
transaction size granularity of a plurality of memories to
further optimize match performance by reducing a number
of accesses to slower performing memories. In addition,
embodiments disclosed herein with regard to a hierarchical
node transaction size further optimize match performance by
enabling efficient use of a limited number of entries in a
node cache, by enabling a total number of cache node entries
to be determined based on a given transaction (i.e., read
access) size associated with a hierarchical level.

FIG. 14 is a block diagram of an example of the internal
structure of a computer 1400 in which various embodiments
of disclosed herein may be implemented. The computer
1400 contains a system bus 1402, where a bus is a set of
hardware lines used for data transfer among the components
of'a computer or processing system. The system bus 1402 is
essentially a shared conduit that connects different elements
of'a computer system (e.g., processor, disk storage, memory,
input/output ports, network ports, etc.) that enables the
transfer of information between the clements. Operative
with the system bus 1402 is an I/O device interface 1404 for
connecting various input and output devices (e.g., keyboard,
mouse, displays, printers, speakers, etc.) to the computer
1400. A network interface 1406 allows the computer 1400 to
connect to various other devices attached to a network.
Memory 1408 provides volatile storage for computer soft-
ware instructions 1410 and data 1412 that may be used to
implement embodiments disclosed herein. Disk storage
1414 provides non-volatile storage for computer software
instructions 1410 and data 1412 that may be used to imple-
ment embodiments disclosed herein. A central processor unit
1418 is also operative with the system bus 1402 and pro-
vides for the execution of computer instructions.

Further example embodiments of disclosed herein may be
configured using a computer program product; for example,
controls may be programmed in software for implementing
example embodiments disclosed herein. Further example
embodiments of the disclosed herein may include a non-
transitory computer-readable medium containing instruc-
tions that may be executed by a processor, and, when
executed, cause the processor to complete methods
described herein. It should be understood that elements of
the block and flow diagrams described herein may be
implemented in software, hardware, firmware, or other simi-
lar implementation determined in the future. In addition, the
elements of the block and flow diagrams described herein
may be combined or divided in any manner in software,
hardware, or firmware.

It should be understood that the term “herein” is trans-
ferable to an application or patent incorporating the teach-
ings presented herein such that the subject matter, defini-
tions, or data carries forward into the application or patent
making the incorporation.

If implemented in software, the software may be written
in any language that can support the example embodiments
disclosed herein. The software may be stored in any form of
computer readable medium, such as random access memory
(RAM), read only memory (ROM), compact disk read-only
memory (CD-ROM), and so forth. In operation, a general
purpose or application-specific processor loads and executes
software in a manner well understood in the art. It should be
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understood further that the block and flow diagrams may
include more or fewer elements, be arranged or oriented
differently, or be represented differently. It should be under-
stood that implementation may dictate the block, flow,
and/or network diagrams and the number of block and flow
diagrams illustrating the execution of embodiments of the
invention.

While this invention has been particularly shown and
described with references to example embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by
the appended claims.

What is claimed is:

1. A method comprising:

in at least one processor operatively coupled to at least

one network interface, a plurality of memories in a

memory hierarchy, and a node cache, in a security

appliance operatively coupled to a network:

storing a plurality of nodes of at least one finite
automaton in the plurality of memories for identify-
ing existence of at least one regular expression
pattern in an input stream received via the at least
one network interface; and

caching a given node and one or more additional nodes,
of the plurality of nodes, stored in a given memory
of the plurality of memories at a hierarchical level in
the memory hierarchy, in the node cache based on a
cache miss of the given node, the one or more
additional nodes cached based on a hierarchical node
transaction size associated with the hierarchical
level, optimizing match performance of the at least
one processor for identifying the existence of the
least one regular expression pattern in the input
stream.

2. The method of claim 1, wherein the hierarchical node
transaction size associated with the hierarchical level
denotes a maximum number of nodes to fetch from the given
memory at the hierarchical level based on a read access of
the given memory by the at least one processor.

3. The method of claim 1, wherein the hierarchical node
transaction size associated with the hierarchical level is
inversely proportional to a ranking of the hierarchical level
in the memory hierarchy and a highest ranked hierarchical
level in the memory hierarchy is associated with a smallest
hierarchical node transaction size and a lowest ranked
hierarchical level in the memory hierarchy is associated with
a largest hierarchical node transaction size.

4. The method of claim 1, wherein the memory hierarchy
includes multiple hierarchical levels and further comprising:

configuring the node cache to store at least a threshold

number of nodes of the at least one finite automaton;
and

denoting the hierarchical node transaction size associated

with a lowest ranked hierarchical level of the multiple
hierarchical levels to enable the at least one processor
to cache the threshold number of nodes.

5. The method of claim 1, wherein the memory hierarchy
includes multiple hierarchical levels and wherein caching
the one or more nodes includes evicting all nodes cached in
the node cache if the given memory is at a lowest ranked
hierarchical level of the multiple hierarchical levels.

6. The method of claim 1, wherein the memory hierarchy
includes multiple hierarchical levels and wherein caching
the one or more nodes includes employing a least recently
used (LRU) or round-robin replacement policy to evict one
or more cached nodes from the node cache, if the hierar-
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chical level is higher than a lowest ranked hierarchical level
of the multiple hierarchical levels, a number of the one or
more cache nodes evicted determined based on the hierar-
chical level.

7. The method of claim 1, wherein the at least one finite
automaton includes a per-pattern NFA generated for a
respective regular expression pattern and the one or more
nodes cached are arranged in a consecutive manner within
the per-pattern NFA.

8. The method of claim 1, further including walking the
one or more nodes cached with segments of a payload of an
input stream to match the respective regular expression
pattern in the input stream.

9. The method of claim 1 wherein the memory hierarchy
including multiple hierarchical levels; and the plurality of
memories includes a first memory, a second memory, and a
third memory, the first and second memories co-located on
a chip with the at least one processor and the third memory
located off the chip and at a lowest ranked hierarchical level
of the multiple hierarchical levels.

10. A security appliance operatively coupled to a network,
the security appliance comprising:

at least one network interface;

a plurality of memories in a memory hierarchy configured
to store a plurality of nodes of at least one finite
automaton for identifying existence of at least one
regular expression pattern in an input stream received
via the at least one network interface;

a node cache configured to store at least a threshold
number of nodes of the at least one finite automaton;
and

at least one processor operatively coupled to the at least
one network interface, the plurality of memories, and
the node cache, and configured to cache a given node
and one or more additional nodes, of the plurality of
nodes, stored in a given memory of the plurality of
memories at a hierarchical level in the memory hier-
archy, in the node cache based on a cache miss of the
given node, the one or more additional nodes cached
based on a hierarchical node transaction size associated
with the hierarchical level, optimizing match perfor-
mance of the at least one processor for identifying the
existence of the at least one regular expression pattern
in the input stream.

11. The security appliance of claim 10, wherein the
hierarchical node transaction size associated with the hier-
archical level denotes a maximum number of nodes to fetch
from the given memory at the hierarchical level based on a
read access of the given memory by the at least one
processor.

12. The security appliance of claim 11, wherein the
hierarchical node transaction size associated with the hier-
archical level is inversely proportional to a ranking of the
hierarchical level in the memory hierarchy and a highest
ranked hierarchical level in the memory hierarchy is asso-
ciated with a smallest hierarchical node transaction size and
a lowest ranked hierarchical level in the memory hierarchy
is associated with a largest hierarchical node transaction
size.

13. The security appliance of claim 10, wherein the
memory hierarchy includes multiple hierarchical levels and
the hierarchical node transaction size associated with a
lowest ranked hierarchical level of the multiple hierarchical
levels enables the at least one processor to cache the
threshold number of nodes.

14. The security appliance of claim 10, wherein the
memory hierarchy includes multiple hierarchical levels and
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to cache the one or more nodes the at least one processor is
further configured to evict the threshold number of nodes
cached in the node cache if the given memory is at a lowest
ranked hierarchical level of the multiple hierarchical levels.

15. The security appliance of claim 10, wherein the
memory hierarchy includes multiple hierarchical levels and
to cache the one or more nodes the at least one processor is
further configured to employ a least recently used (LRU) or
round-robin replacement policy to evict one or more cached
nodes from the node cache, if the hierarchical level is higher
than a lowest ranked hierarchical level of the multiple
hierarchical levels, a number of the one or more cache nodes
evicted determined based on the hierarchical level.

16. The security appliance of claim 10, wherein the at
least one finite automaton includes a per-pattern non-deter-
ministic finite automaton (NFA) generated for a respective
regular expression pattern and the one or more nodes cached
are arranged in a consecutive manner within the per-pattern
NFA.

17. The security appliance of claim 10, wherein the at
least one processor is further configured to walk the one or
more nodes cached with segments of a payload of an input
stream to match the respective regular expression pattern in
the input stream.

18. The security appliance of claim 10, wherein the
memory hierarchy includes multiple hierarchical levels and
the plurality of memories includes a first memory, a second
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memory, and a third memory, the first and second memories
co-located on a chip with the at least one processor and the
third memory located off the chip and at a lowest ranked
hierarchical level of the multiple hierarchical levels.

19. A non-transitory computer-readable medium having
stored thereon a sequence of instructions which, when
loaded and executed by a processor, the processor opera-
tively coupled to at least one network interface, a plurality
of memories in a memory hierarchy, and a node cache,
causes the processor to:

store a plurality of nodes of at least one finite automaton

in the plurality of memories for identifying existence of
at least one regular expression pattern in an input
stream received via the at least one network interface;
and

cache a given node and one or more additional nodes, of

the plurality of nodes, stored in a given memory of the
plurality of memories at a hierarchical level in the
memory hierarchy, in the node cache based on a cache
miss of the given node, the one or more additional
nodes cached based on a hierarchical node transaction
size associated with the hierarchical level, optimizing
match performance of the processor for identifying the
existence of the at least one regular expression pattern
in the input stream.
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